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Abstract

This PhD research thesis proposes novel and efficient combinatorial optimization-based solu-

tion methods for the (α, β)-k Feature Set Problem. The (α, β)-k Feature Set Problem is a

combinatorial optimization-based feature selection approach proposed in 2004, and has several

applications in computational biology and Bioinformatics. The (α, β)-k Feature Set Problem

aims to select a minimum cost set of features such that similarities between entities of the same

class and differences between entities of different classes are maximized.

The developed solution methods of this research include heuristic and exact methods. While

this research focuses on utilizing exact methods, we also developed mathematical properties,

and heuristics and problem-driven local searches and applied them in certain stages of the exact

methods in order to guide exact solvers and deliver high quality solutions. The motivation

behind this stems from computational difficulty of exact solvers in providing good quality

solutions for the (α, β)-k Feature Set Problem. Our proposed heuristics deliver very good

quality solutions including optimal, and that in a reasonable amount of time.

The major contributions of the presented research include: 1) investigating and exploring

mathematical properties and characteristics of the (α, β)-k Feature Set Problem for the first

time, and utilizing those in order to design and develop algorithms and methods for solving large

instances of the (α, β)-k Feature Set Problem; 2) extending the basic modeling, algorithms and

solution methods to the weighted variant of the (α, β)-k Feature Set Problem (where features

have a cost); and, 3) developing algorithms and solution methods that are capable of solving

large instances of the (α, β)-k Feature Set Problem in a reasonable amount of time (prior to

this research, many of those instances pose a computational challenge for the exact solvers).

To this end, we showed the usefulness of the developed algorithms and methods by applying

them on three sets of 346 instances, including real-world, weighted, and randomly generated

instances, and obtaining high quality solutions in a short time. To the best of our knowledge,

the developed algorithms of this research have obtained the best results for the (α, β)-k Feature

Set Problem. In particular, they outperform state-of-the-art algorithms and exact solvers, and

have a very competitive performance over large instances because they always deliver feasible

solutions, and obtain new best solutions for a majority of large instances in a reasonable amount

of time.
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Chapter 1

Introduction

Abstract

This chapter brings a short introduction into the presented research thesis, as well as a brief

discussion regarding the role of optimization and operations research into computational bi-

ology and Bioinformatics. The research question answered by this research thesis, and four

research goals, which we achieved and accomplished in this thesis, are also discussed. Finally,

the chapter explains the thesis structure, and reviews the contents of every chapter of the

thesis.

1.1 Introduction

Bioinformatics has been defined in many different ways. Although, usually it refers to any use

of computers to analyze and characterize the molecular components of living organisms, gen-

erally, it is the use of computers for processing biologically-derived data and information. This

definition is according to the biological science view towards Bioinformatics (Waterman, 1995).

In fact, Bioinformatics is associated with information science and information technology of

biology. Note that both definitions share a common view: information contained within the

biological data. Furthermore, both definitions imply that large amounts of data should be

managed and analyzed.

According to Luscombe et al. (2001), “Bioinformatics is conceptualizing biology in terms of

macromolecules (in the sense of physical-chemistry) and then applying informatics techniques

(derived from disciplines such as applied maths, computer science, and statistics) to understand

and organize the information associated with these molecules, on a large-scale”.

We can state that Bioinformatics is an interdisciplinary field with the goal of developing

methods and tools for storing, organizing, exploring, and analyzing large biological data as

well as discussing and interpreting the outcomes. For this purpose, Bioinformatics benefits

from many areas of computer science, mathematics and engineering. Here, efficient methods

1



1.2. Optimization in Bioinformatics

and algorithms that can store, process and analyze biological data are a must.

During this Ph.D project, outcomes of which have been presented in this research thesis,

I designed, developed, and implemented models and solution techniques for an important and

applicable optimization problem arising in computational biology and Bioinformatics, that is,

the (α, β)-k Feature Set Problem. Later in this chapter, I shall state the research question and

research goals of this research. I will conclude this chapter by explaining the structure of the

thesis, and pointing out the subject and contents of every chapter.

1.2 Optimization in Bioinformatics

Optimization has found its way in healthcare and Bioinformatics. It has helped healthcare

professionals to improve their decisions and processes; in fact, to better utilize the scarce re-

sources available. A few examples of operations research applications in healthcare include

locating healthcare facilities (Farahani et al., 2012), distributing blood products among hos-

pitals (Salehipour and Sepehri, 2012), and locating ambulances to minimize the delay and

maximize the coverage (Brotcorne et al., 2003). For more applications of operations research

techniques in healthcare we refer the interested reader to Batun and Begen (2013); Brandeau

et al. (2005); Brandeau et al. (2004). Rais and Viana (2011) provided current research trends

of optimization and operations research in healthcare.

The role of optimization in biology and Bioinformatics is well reflected by certain aspects

of problems, which may be stated in the form of making the best decision, out of huge number

of acceptable decisions, with respect to available resources, as well as other practical considera-

tions and limitations. Practical considerations or problem requirements (known as constraints

in modeling) heavily impact decision making. Although, a decision is preferred to be verifiable

in terms of quality, and that in a reasonable amount of time, even obtaining such a decision

might computationally be very expensive, in particular, in the case of complex problems includ-

ing large instances and datasets (many optimization problems in the domain of computational

biology and Bioinformatics fall in this category). For this reason, an alternative approach is to

obtain very good quality decisions instead of obtaining the best decision (whenever obtaining

the best decision is very expensive). The methods that look for high quality decisions are

known as heuristic or approximation methods, and the associated decision is referred to local

optimum decision (versus exact methods, and global optimum decision or the best decision).

Although, heuristic methods may even obtain the global optimum decision, in general and in

most cases there is still no performance guarantee1.

Many optimization problems in the areas of computational biology and Bioinformatics

are very difficult to solve to optimality (i.e. to obtain the global optimal solution). Despite

1Notice that several well-known optimization problems are solved to optimality by heuristic methods, and that

in polynomial time. These methods also provide proof of optimality. Several examples include heuristics

developed for the Shortest Path and Minimum Spanning Tree problems (Dasgupta et al., 2008; Cormen et

al., 2009; Aini and Salehipour, 2012).

2



Chapter 1. Introduction

this, many authors analyzed and developed statistical tools and combinatorial optimization

problems and methods, as well as efficient algorithms, which can obtain high quality solutions

in a reasonable amount of time. For example, Ravetti et al. (2010) analyzed a microarray2

dataset of 31 samples associated with the Alzheimer’s disease (AD), including 22 AD samples,

and 9 healthy samples. They utilized certain statistics as well as mathematical programming

models, and uncovered biomarkers including 1372 probe gene expression signatures. These

agree with the already established markers of progression in AD. Wang et al. (2008) proposed

an evolutionary method for the problem of probe selection. The problem includes finding a

minimal non-unique probe set, which can be used as identifiers. Brinza and Zelikovsky (2006)

studied the problem of searching for the most disease-associated and the most disease-resistant

multi-gene interactions for a given sample of diseased and healthy individuals. More precisely,

they studied disease susceptibility prediction problem. For this, they developed several search

methods to address the problem of Multi-SNP (Multi Single Nucleotide Polymorphisms).

Sequence alignment is to arrange the sequences of DNA, RNA, or protein to identify re-

gions of similarity (Mount, 2004). The sequence alignment methods include both exact (e.g.

Dynamic Programming) and heuristics. Due to the size of sequence local alignments may be

preferred to global alignments. Global alignments globally optimize the sequence alignment

(thus, through entire sequence), while local alignments focus on parts of the sequence. Another

example is protein threading or fold recognition, which includes developing models for proteins.

Wagner et al. (2004) presented large-scale optimization techniques for the problem of proteins

folding. The objective of their model is correct prediction of the structure of known proteins.

Related to the problem of proteins folding, Xu et al. (2000) developed a network flow formula-

tion for the problem of protein domain decomposition. Structural domains are the basic and

semi-independent units of protein folding. For a classification of applications of mathemati-

cal optimization in computational biology and Bioinformatics we refer the interested reader to

Ramsden (2009); Banga (2008); Polanski and Kimmel (2007). Lancia (2008) provided a survey

on mathematical programming methods in computational biology and Bioinformatics.

1.3 Feature selection in Bioinformatics

In this section, we briefly explain an interesting problem in the area of feature selection, which

has several applications in Bioinformatics. Chapter 2 will extensively discuss this.

Generally speaking, feature selection is to choose a subset of features, out of a set of

candidate features, such that the selected set best represents the whole in a particular aspect.

As discussed by Paula (2012), removing irrelevant or redundant features, and reducing the

dimensionality of the dataset are two reasons to perform feature selection. These criteria are

both interesting and important because given the size of the datasets and the amount of data we

2Microarray is a two dimensional array on a chip that can keep huge amount of biological data. One type of

such data is gene expression. Gene expression is the process of using gene’s information to synthesis gene

products, and typically includes amount and timing of appearance of a functional product of a gene.

3



1.3. Feature selection in Bioinformatics

encounter in many practical applications, they ease the analysis, utilization, and interpretation

of high-dimensional datasets. For example, Inostroza-Ponta et al. (2008); Inostroza-Ponta et

al. (2011) modeled a visualization problem as a Quadratic Assignment Problem (QAP).

Feature selection is an important technique in refining data. In practice, different criteria

and measures might be of interest for selecting such a subset, for example a less expensive set,

stronger classifier, and new/independent features in the set, among others. These criteria are

additional motivations for selecting only a subset of features rather than selecting the whole

set. For example, in Bioinformatics studying the whole set of probes or genes in a microarray

dataset is highly resource demanding. On top of this, more often obtaining a set of probes to

act as a biomarker is of one of the primary goals of the analysis. For example, it is important

to find out which genes, probes, or SNPs are useful in distinguishing a certain group of people

or diagnosis of a given disease.

Feature selection has a broad applications in computational biology and Bioinformatics.

Recently, Wang et al. (2016a) provided a thorough survey reviewing some of the feature selec-

tion applications in Bioinformatics where focus is on combinatorial optimization methods and

big data analysis. This is one of the first studies that categorizes feature selection methods

into exhaustive search, heuristic search, and hybrid search methods (instead of traditional fil-

ter, wrapper, and embedded approaches). Wang (2012) discussed several examples of feature

selection applications in Bioinformatics. As one example, the author introduced new statistical

methods for feature selection, and showed that how a set of only two genes can successfully

classify Lymphoma dataset, which were previously classified by a set of 48 genes (Alizadeh

et al., 2000), while the accuracy is kept at the same level of 100%.

Another interesting example of feature selection in Bioinformatics includes distinguishing

between two classes of healthy and disease samples. Given a set of disease and healthy samples

and a set of genes or SNPs with their values of expression level for every sample, we are inter-

ested in selecting the minimum number of genes (a subset of all genes) such that a classification

between healthy and disease samples with a good accuracy when predicting classes can be con-

cluded. In other words, the selected subset of genes will act as a biomarker. For example,

Ravetti et al. (2009); Ravetti and Moscato (2008) employed the combinatorial optimization

approach of (α, β)-k Feature Set Problem (see Chapter 2 for more details) to select features,

and proposed novel biomarkers for the prediction of Alzheimer’s disease and Prostate Cancer.

The studies showed that these biomarkers are superior to others found in the literature from

the classification point of view, since they lead to a better accuracy when predicting classes

using classifiers.

Notice that the feature selection is far more than obtaining a smaller feature set. Its primary

purpose is to obtain a classifier with a better accuracy when predicting classes by using the

classifier. This is particularly important for many biological datasets, as the associated analyses

are often very resource-demanding. Given that the biological datasets include hundreds of

samples and thousands of features (e.g. genes, probes, and SNPs), exploring and selecting
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a subset of features with the desired behavior and characteristic is very important. One of

the goals of this research is to develop efficient optimization-based algorithms and methods to

select this subset of features. It should be noted that other methods such as classification and

clustering may have the ability to select the right features as a part of their learning (Guyon

and Elisseeff, 2003; Chormunge and Jena, 2018; Huang et al., 2018; Şeref et al., 2018). To do

so, we study the problem of (α, β)-k Feature Set, which was proposed by Cotta et al. (2004);

Berretta et al. (2005), and has several applications in the areas of computational biology and

Bioinformatics, and we develop mathematical properties and efficient optimization algorithms

and methods in order to obtain a subset of features with the desired characteristics.

1.4 Research question and research goals

The major research question, which we investigate in this thesis, and provide answer for it

includes:

• Research question. Can we develop efficient combinatorial optimization-based algorithms

and methods for the (α, β)-k Feature Set Problem (FSP), in order to select a subset of

features, out of a larger set, and that in a reasonable amount of time?

As we will discuss in Chapter 2, the research question attempts to overcome limitations of

the available combinatorial optimization-based algorithms and methods for the (α, β)-k FSP.

The major goal of this research is to “design, develop and implement modeling techniques,

and efficient and advanced optimization-based algorithms and methods for the (α, β)-k FSP”.

This goal is inspired by the computational complexity of obtaining optimal solutions for large

instances of the (α, β)-k FSP in a reasonable amount of time (we will discuss those algorithms

and solution methods in details in Chapter 4 and Chapter 5), and lack of existence of algorithms

and solution methods for the (α, β)-k FSP, in particular, for large instances (see Chapter 2).

The major goal of this research thesis can be further narrowed down into the following two

goals.

• Research goal 1. Investigating and exploring mathematical properties and characteris-

tics of the (α, β)-k FSP, and utilizing those in designing and developing algorithms and

methods to solve the problem. This goal is accomplished in Chapter 3. Furthermore,

this research extends the developed modeling, algorithms and solution methods to the

weighted variant of the (α, β)-k FSP. In the weighted variant, features are given costs

associated with their importance, weight, preference, etc. One application of this is when

certain features are always preferred to be selected. This goal is fulfilled by incorporat-

ing the features’ costs in all modeling, algorithms, solution methods and computational

experiments.

• Research goal 2. Contributing to solving the (α, β)-k FSP by developing efficient algo-

rithms and methods, in particular, for instances that exact solvers including the well-
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known solver CPLEX cannot obtain good quality solutions in a reasonable amount of

time. While this research thesis focuses on utilizing exact solvers, we developed certain

heuristics and problem-driven local searches to facilitate and speed-up the exact solvers.

This goal is achieved and accomplished in Chapters 4 and 5. In addition to this, we

showed the usefulness of the developed algorithms and methods by applying them to

real-world biological datasets ranging from medium to large. To the best of our knowl-

edge, and at the time of writing this research thesis, the algorithms and methods of this

research can efficiently solve large instances of the (α, β)-k FSP in a reasonable amount

of time. Such an achievement is not available prior to this research.

1.5 Thesis structure

After discussing the research question and research goals in this chapter, we define the research

problem of this thesis in Chapter 2 (i.e. the (α, β)-k Feature Set Problem (FSP)), and discuss

the research motivation. The chapter establishes the notations and mathematical foundations

for the (α, β)-k FSP. The remaining of Chapter 2 reviews the most important methods and

techniques of feature selection, as well as relevant works studying the applications of feature

selection in computational biology and Bioinformatics.

Chapter 3 investigates the mathematical models and properties of the (α, β)-k FSP. In

this research thesis, we solve the (α, β)-k FSP by following a four-stage approach. Indeed,

this approach decomposes the (α, β)-k FSP into a set of related optimization problems, which

we call sub-problems, and sequentially solves each sub-problem. Those sub-problems are the

Min k (α, β)-k Feature Set Problem, the Max β (α, β)-k Feature Set Problem, and the Max

Cover (α, β)-k Feature Set Problem. The chapter reviews mathematical programming formu-

lations for the sub-problems. Notations, and a graph representation are thoroughly discussed

in this chapter. After establishing those foundations, we develop several important mathemat-

ical properties and bounds for the sub-problems. The bounds and properties are utilized in

Chapters 4 and 5 in order to develop highly efficient heuristic algorithms for the (α, β)-k FSP.

Chapter 4 develops several heuristic algorithms for both weighted and unweighted Min k

(α, β)-k Feature Set Problem. While in the weighted variant there is a cost associated with

a feature, in the unweighted variant the cost is unique and equal across all features. The

proposed heuristic algorithms include greedy construction and improvements, and one very

efficient exact+heuristic (EH) algorithm, which combines both exact and heuristic algorithms,

and obtains very high quality solutions for the Min k (α, β)-k Feature Set Problem. We tested

those algorithms over three sets of real-world, weighted and randomly generated instances, and

in total 346 instances. Computational results show that the proposed EH algorithm provides

very good quality solutions, including new best solutions, and competes well against the state-

of-the-art algorithms.

Chapter 5 develops exact and heuristic solution algorithms for the Max β (α, β)-k Feature
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Set Problem. The major proposed solution method includes an exact+heuristic (EH) algorithm

for the Max β (α, β)-k Feature Set Problem. To the best of our knowledge, the EH algorithm

obtains the best results for the Max β (α, β)-k Feature Set Problem to date, in particular,

for large instances. This is verified through solving 136 instances including real-world and

randomly generated instances. This chapter also studies the Max Cover (α, β)-k Feature Set

Problem, and proposes a simple but effective solution method for the Max Cover (α, β)-k

Feature Set Problem.

In Chapter 6 we wrap up this research thesis by pointing out the major outcomes of the

research, in terms of both algorithms and solutions methods, and the computational achieve-

ments. Furthermore, we discuss the limitations of the research, and a few directions for the

future research.

1.6 Conclusion

This chapter mainly provided an introduction into this research thesis, and explained the re-

search question and goals. We also discussed the structure of thesis, including a short summary

on every chapter.
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Chapter 2

Research Problem and Literature

Review

Abstract

This chapter defines the research problem of this thesis, and states the research motivation.

The main research problem of this thesis is to develop optimization methods for the (α, β)-

k Feature Set Problem (FSP). The (α, β)-k FSP is a new combinatorial optimization-based

approach proposed in 2004 for the feature selection. The (α, β)-k FSP selects features such

that the selected set of features maximizes the similarities between entities of the same class

and differences between entities of different classes. This chapter discusses the (α, β)-k FSP,

and explains how an instance of the (α, β)-k FSP may be built. Additionally, we review some

of the most important techniques of feature selection, and note several applications of feature

selection, particularly, in the context of computational biology and Bioinformatics. Finally,

the chapter discusses research motivation.

2.1 Introduction

The main research problem of this thesis is to develop optimization methods for the (α, β)-k

Feature Set Problem (FSP). The (α, β)-k FSP aims to select features in order to distinguish

two classes of data such that the selected set of features maximizes the similarities between

entities of the same class and differences between entities of different classes. The (α, β)-k FSP

was proposed in 2004 by Cotta et al. (2004), and is a combinatorial optimization-based feature

selection approach. As authors discussed, the (α, β)-k FSP is a generalization of the k-Feature

Set Problem, which is proven NP-Hard (Cotta et al., 2004). Hence, the (α, β)-k FSP is also

NP-Hard.

This research is motivated by a broad range of applications that the (α, β)-k FSP has in

practice, and in a variety of domains including classification, data mining, computational biol-
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ogy and Bioinformatics, and lack of efficient solution methods, particularly, for large instances

and datasets. One such application is to obtain a biomarker, which can be a set of SNPs, genes,

probes, etc. in order to distinguish healthy and disease samples (see for example Ravetti and

Moscato (2008); Ravetti et al. (2009); Ravetti et al. (2010); Paula et al. (2011)). Some of these

application are reviewed in Section 2.3.

The remaining of this chapter is organized as follows. The problem of this PhD research

is discussed in Section 2.2. This includes problem’s concept and framework, notations, and a

graph representation. Section 2.3 provides a general literature review on the feature selection

methods, in particular, with respect to applications in computational biology and Bioinfor-

matics. We discuss the research motivation in Section 2.4. Finally, Section 2.5 concludes the

chapter.

2.2 Problem statement

Presume we are given a dataset, in which two classes of data exist, for example, Class 1

and Class 2, and a set J = {1, . . . , n}, |J | = n of features, each with a profile Pj ,∀j ∈ J

(P = {Pj},∀j ∈ J). A feature profile Pj includes a set of discrete values in the ranges of

0 and 1. Expectedly, features may not have a unique cost (here, cost is a general term and

may model feature’s weight, importance, preference, relation to other features, etc.). Thus,

cj ∈ R+,∀j ∈ J is the cost associated with selecting feature j (notice that this is an extension

to the original (α, β)-k Feature Set Problem (FSP), in which all features have a unique cost of

C, where C ∈ R+ is a constant). Furthermore, let S1 and S2 denote the set of all entities in Class

1 and Class 2, where S1 = {s11, . . . , s1,n1
}, |S1| = n1, and S2 = {s21, . . . , s2,n2

}, |S2| = n2. Let

I1 and I2 represent sets of pairs of entities of different classes, and of the same class. Then I1

includes all pairs of entities (every combination of size two of entities) belonging to different

classes, and I2 includes all pairs of entities (every combination of size two) belonging to the

same class. Sets I1 and I2 can be formed by using Equation (2.1) and Equation (2.2). The

cardinality of these sets may be derived by using Equation (2.3) and Equation (2.4). We shall

call I1 and I2 sets of elements.

I1 = {(s11, s21), . . . , (s11, s2,n2
), . . . , (s1,n1

, s2,n2
)} (2.1)

I1 is the set of all pairs of entities (s1,t, s2,t′), where s1,t ∈ S1,∀t = 1, . . . , n1, and s2,t′ ∈
S2,∀t′ = 1, . . . , n2.

I2 = {(s11, s12), . . . , (s11, s1,n1
), . . . , (s21, s22), . . . , (s21, s2,n2

)} (2.2)

Similarly, I2 includes all pairs of entities (s1,t, s1,t′), where (s1,t, s1,t′) ∈ S1,∀t, t′ = 1, . . . , n1, t 6=
t′, and (s2,t, s2,t′) ∈ S2, where (s2,t, s2,t′) ∈ S2,∀t, t′ = 1, . . . , n2, t 6= t′.

The cardinality of I1 and I2 is then
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|I1| =
(
|S1|

1

)
×
(
|S2|

1

)
= n1 × n2 (2.3)

|I2| =
(
|S1|

2

)
+

(
|S2|

2

)
=
n1 × (n1 − 1)

2
+
n2 × (n2 − 1)

2
(2.4)

Indeed, the (α, β)-k FSP looks for a minimum cost set of features, where the set maximizes

the differences between the entities of different classes (set I1) and similarities between the

entities of the same class (set I2). We denote this set of features by J∗ ⊆ J . In computational

biology and Bioinformatics features may represent proteins, genes, probes, SNPs, etc., while

Class 1 may represent a set of healthy samples, and Class 2 a set of disease samples.

Given these notations and definitions, we can proceed to mathematically explain the (α, β)-

k FSP. Notice that the model of (α, β)-k FSP, which was originally proposed by Cotta et

al. (2004); Berretta et al. (2005), and was also discussed in Paula (2012), does not consider

costs for selecting features. We extend that by considering costs of selecting features in all

models and solution methods of this research; so one may model the cost of features in future

analysis. Therefore, instead of a selecting a set of k features, we may select a set of minimum

cost features. The original (α, β)-k FSP is defined with three positive integer parameters α,

β, and k. The value of α represents the minimum number of features that must explain the

differences between any pair of entities of different classes. The value of β represents the

minimum number of features that must explain the similarities between any pair of entities of

the same class. Finally, k represents the number of features to be selected. More precisely, the

(α, β)-k FSP has the following characteristics.

• Every element in I1 (pair of entities of different classes) must be “explained” by at least

α features. We re-state this as element i,∀i ∈ I1 must be covered by at least α features,

where α is a parameter, and 1 ≤ α ≤ α∗, α ∈ Z+ (Requirement 1).

• A set J∗ ⊆ J of features with the minimum cost, among all alternative sets, must

be selected (Objective 1). In other words, Σj∈J∗cj has the smallest cost among every

alternative set of features.

• Every element in I2 (pair of entities of the same class) must be “explained” by at least

β features, where 1 ≤ β ≤ β∗, β ∈ Z+ (Objective 2).

Now let us explain how we can build an instance of the (α, β)-k FSP from a dataset with

two classes (groups) of data. For the sake of illustration, we shall explain this by bringing a

small example. Assume we are given a dataset that includes two different classes (groups) of

data (see Table 2.1). Class 1 (e.g. Control) consists of three healthy samples (entities), and

Class 2 (e.g. Case) consists of three disease samples (the number of elements in the classes do

not need to be equal). Furthermore, the dataset includes five features, which may be protein,

genes, probes, SNPs, etc.
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Table 2.1: A dataset with two classes (groups) of data. The dataset includes five features (e.g.

proteins, probes, genes, SNPs, etc.), and three samples (entities) in each class. Every feature

has an equal cost of one. Moreover, a feature appears either up-regulated (associated with a

value of 1) or down-regulated (associated with a value of 0) in a sample.

Feature Cost Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

A 1 0 0 0 0 1 0

B 1 1 1 1 1 0 1

C 1 1 1 1 0 1 0

D 1 1 1 1 1 0 0

E 1 0 0 1 0 0 0

Class Healthy Healthy Healthy Disease Disease Disease

The entities of Table 2.1 may refer to discretized gene expression levels (Berretta et al., 2005).

The first column in Table 2.1 states the name of features, and the second column holds the

cost of selecting a feature. For this example, we assumed that all features have a unique cost

of 1 (this may be referred to unicost or unweighted case). The last row in Table 2.1 states the

label of the classes. Hence, one may distinguish Class 1 and Class 2. For example, Samples 1, 2

and 3 belong to the healthy class (Class 1) while Samples 4, 5 and 6 belong to the disease class

(Class 2). Row j corresponds to the values of expression level of feature j for samples. Indeed,

a feature may be up-regulated (associated with a value of 1) or down-regulated (associated

with a value of 0) in a sample. For the sake of simplicity of this example, we assumed that

the values for expression level only take 0, for a down-regulated level, or 1, for an up-regulated

level. Because the required data for the (α, β)-k FSP must be discrete and the values found on

many datasets are often real numbers, the method of Fayyad and Irani (1993) can be applied

to the values of data in order to discretize them; see also Cotta et al. (2004); Paula (2012).

Given the dataset presented in Table 2.1, the first step in building an instance of the (α, β)-

k FSP is to derive sets I1 and I2. The sets I1 and I2 can be derived by using Equation (2.1)

and Equation (2.2):

I1 = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

and

I2 = {(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6)}

The second step is to derive feature profiles. The profile of feature j can be modeled by

a set of binary values. More precisely, Pj = {aij ∈ {0, 1},∀i ∈ I1 ∪ I2,∀j ∈ J}. For element

i ∈ I1 (pairs of entities of different classes), if feature j has different values of expression level

for the pair (for example, one entity has a value of 1 and the other 0), then aij = 1. Otherwise,
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Table 2.2: Building an instance of the (α, β)-k Feature Set Problem (FSP) from the dataset

presented in Table 2.1. To do so, feature profiles are extracted by determining the values of

parameter aij . Notice that if feature j has different values of expression level for a pair i of

entities (samples), then aij = 1, otherwise aij = 0.

Pair (members of set I1) PA PB PC PD PE

(1,4) 0 0 1 0 0

(1,5) 1 1 0 1 0

(1,6) 0 0 1 1 0

(2,4) 0 0 1 0 0

(2,5) 1 1 0 1 0

(2,6) 0 0 1 1 0

(3,4) 0 0 1 0 1

(3,5) 1 1 0 1 1

(3,6) 0 0 1 1 1

aij = 0. Equation (2.5) illustrates the calculation of values of parameter aij . Notice that

aij ,∀i ∈ I2, j ∈ J will differently be determined than aij ,∀i ∈ I1, j ∈ J .

aij =


1, if εjt 6= εjt′ , where i ∈ I1, t = 1, . . . , n1, t

′ = 1, . . . , n2

1, if εjt = εjt′ , where i ∈ I2, t, t′ = 1, . . . , n1, t 6= t′ ∨ t, t′ = 1, . . . , n2, t 6= t′

0, Otherwise

(2.5)

where εjt,∀j ∈ J, t = 1, . . . , n1 ∨ t = 1, . . . , n2 is the value of expression level of feature j for

entity t.

Table 2.2 shows the values for aij ,∀i ∈ I1, j ∈ J (here, we only show aij ,∀i ∈ I1, j ∈ J).

The first column of Table 2.2 shows all members of set I1. Entries of table (values of 0 and 1)

are the values of parameter aij . For example, the first entry, which is associated with feature

“A” and pair “(1,4)”, has a value of 0 because feature “A” does not have different values of

expression level for each entity in the pair. In fact, feature “A” has expression level values of 0

for both Samples 1 and 4; hence, a11 = 0. On the other hand, a21 = 1 (associated with feature

“A” and pair “(1,5)”) because feature “A” has different values of expression level for Samples

1 and 5.

One may realize that Table 2.2 represents feature profiles P = {Pj ,∀j ∈ J}, where Pj is

profile of feature j. A feature profile explains whether a feature distinguishes (covers) a set of

elements, where an element is a pair of entities. For example, feature “A” distinguishes pairs

of Samples (1,5), (2,5), and (3,5), while feature “E” distinguishes pairs of Samples (3,4), (3,5),

and (3,6). According to the features profile presented in Table 2.2, we can see that features A

and C are able to distinguish (cover) all elements of I1 (pairs of entities belonging to different

classes).
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Figure 2.1: A bipartite graph G = (VJ ∪V1 ∪V2, E1 ∪E2) associated with the (α, β)-k Feature

Set Problem (FSP). The graph is built upon the example of Table 2.1, where V1 and V2 are

sets of vertices associated with I1 and I2, and VJ is the set of vertices representing features. E1

and E2 are two sets of disjoint edges: E1 = {eij |aij = 1,∀i ∈ V1, j ∈ VJ}, and E2 = {eij |aij =

1,∀i ∈ V2, j ∈ VJ}. The sets of vertices of V1, V2, and VJ are shown by using different colors.

We can represent features and elements as a bipartite graph by three sets of disjoints

vertices (nodes). Let VJ denotes the set of vertices representing features, where |VJ | = |J |, V1
the set of vertices representing elements of I1, where |V1| = |I1| = n1, and V2 the set of vertices

representing elements of I2, where |V2| = |I2| = n2. An edge eij ,∀i ∈ V1 ∪ V2, j ∈ VJ connects

vertex i to vertex j if and only if aij = 1. We may see that this results in a bipartite graph1

G = (VJ ∪ V1 ∪ V2, E1 ∪ E2), where E1 = {eij |aij = 1,∀i ∈ V1, j ∈ VJ} and E2 = {eij |aij =

1,∀i ∈ V2, j ∈ VJ}. The bipartite graph associated with the example of Table 2.1 is illustrated

in Figure 2.1.

Figure 2.1 reveals several important concepts regarding the combinatorial optimization

problem of (α, β)-k FSP. Firstly, because every element of I1 must be explained (covered) by

at least α features, the number of edges adjacent to every vertex i ∈ V1 must at least be α.

This implies that |J∗| ≥ α. Secondly, a set of features with the minimum cost is indeed a set of

vertices J∗ ⊆ VJ with the minimum total cost. Thirdly, in order to maximize the similarities

1Given graph G = (V,E) with vertex set V and edge set E, a bipartite graph of G divides V into two disjoint

subsets V ′ and V ′′ such that their joint is V , and an edge between V ′ and V ′′ has one end point in either.
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between any pair of entities of the same class the selected subset of features must have the

maximum degree2 over E2. Finally, if more than one set of features with these properties exist,

we may wish to choose the set with the largest possible covering, that is, the set of vertices

J∗ ⊆ VJ has the maximum degree over E1 and E2 (later in Chapter 3 we shall see this refers

to the combinatorial optimization problem of Maximum Cover (α, β)-k Feature Set).

2.3 A review of feature selection methods

In this section, we shall provide a brief review of the relevant research in the context of feature

selection, and related to the problem of this research thesis. The “feature selection”, also

known as variable selection, attribute selection or variable subset selection, is the process of

selecting a subset of relevant features for the purpose of classification and clustering, and

have a broad range of applications including machine learning and prediction. For example in

urban transport network systems (Ferchichi et al., 2009), market investment and stock price

prediction (Tsai and Hsiao, 2010; Meiri and Zahavi, 2006), and computational biology and

Bioinformatics (Ravetti and Moscato, 2008; Ravetti et al., 2009; Ravetti et al., 2010; Paula

et al., 2011; Haque et al., 2016).

Feature selection is an important tool in data mining. The main idea and motivation behind

feature selection is that data contain many redundant, irrelevant or unimportant features,

which may not be of interest when generating a model, or analyzing data. Research on this

problem is very rich, see for example Liu and Motoda (1998); Guyon and Elisseeff (2003); Zhao

et al. (2010). We refer the interested reader to Liu and Motoda (2007) for more details.

The methods of selecting feature operate by selecting a set of features, out of a larger set,

and evaluating the set by some criteria. One such criterion is the amount of error, and hence,

we are interested in a set of features with the minimum error. The main difference of the

feature selection methods lies in the evaluation criteria. The major feature selection methods

include (Chandrashekar and Sahin, 2014):

• Wrapper methods. Wrapper methods use the classifier data to guide the search; thus,

they are dependent on the classifiers. Upon finding a new set of features, the set is

applied to a training data, and its outcome is evaluated against the benchmark outcome.

The gap in the outcomes may be evaluated as the error of the set of features. Because

every time a new set is obtained, it is applied on a training data, Wrapper methods are

computationally very expensive, however, they usually provide the best outcome, i.e. the

best set of features. Sequential search is one of the most used algorithms in Wrapper

methods. For example Inza et al. (2004) compared the outcomes of their sequential search

method with a filter method for Colon and Leukemia cancer data. Another example is the

sequential search algorithm of Xiong et al. (2001). The complexity of Wrapper methods

has lead to development of heuristic algorithms in order to speed up Wrapper methods,

2The degree of a vertex is the number of edges adjacent to the vertex.
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particularly, the evolutionary algorithms. Examples include the studies of Duval and

Hao (2009); Blanco et al. (2004); Jirapech-Umpai and Aitken (2005).

• Filter methods. These methods leave aside those irrelevant features by filtering out the

most relevant and most important features. Because performance evaluation criterion

in Filter methods is directly calculated from data, Filter methods are independent of

any classifier/predictor. Due to this, typically Filter methods are computationally less

expensive than Wrapper and Embedded methods. A comparison of several Filter meth-

ods was reported in Sánchez-Maroño et al. (2007). According to Saeys et al. (2007),

Filter methods are among the most applicable methods, and hence, a very rich literature

on the methods and applications exists. For several examples, we refer the interested

reader to Breitling et al. (2004); Fox and Dimmic (2006); Wang et al. (2005); Jafari and

Azuaje (2006).

• Embedded methods. These methods combine different criteria, algorithms, and ap-

proaches, some of which belong to the methods of Wrapper and Filter. Embedded meth-

ods interact with the classifier, hence, they are dependent on the classifier. However,

they do not have the computational complexity of Wrapper methods. The studies of

Dı́az-Uriarte and Andrés (2006); Jiang et al. (2004); Ma and Huang (2005) investigated

and developed several Embedded methods, and applied them to biological data.

• Combinatorial Optimization methods. Although this is not mentioned as an independent

category in previous studies (for example in Saeys et al. (2007); Paula (2012)), following

the focus of this research on combinatorial optimization methods for the (α, β)-k Fea-

ture Set Problem, we shall discuss these methods as a new category (similarly, Wang

et al. (2016a) categorizes feature selection methods into three categories of exhaustive

search, heuristic search, and hybrid search methods, instead of traditional Wrapper,

Filter, and Embedded methods). However, one may realize that Combinatorial Opti-

mization methods can be categorized under Filter methods because both filter out ir-

relevant features, and both are independent of classifiers. Several major works in this

area, which are relevant to the presented research, are due to Berretta et al. (2005);

Berretta et al. (2008). The authors’ major idea to discard irrelevant features is to select

the smallest subset of features that maximizes the similarities between entities of the

same class and differences between entities of different classes. Depending on datasets,

the computational complexity of Combinatorial Optimization methods may greatly vary,

and hence, heuristic algorithms have been considered as well. The studies of Berretta

et al. (2007); Berretta et al. (2008); Ravetti and Moscato (2008); Ravetti et al. (2009);

Paula et al. (2011) focused on utilizing the standard exact solvers, and that only for

instances that the exact solvers are capable of solving in a reasonable amount of time. In

contrast to those, Paula (2012) developed the first heuristic algorithms. His algorithms

include Variable Neighborhood Search+Tabu Search (VNS+TS) algorithms with certain
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randomized local searches. The author validated his algorithms on a set of randomly

generated instances, as well as a set of six biological datasets (we used the same sets to

conduct our computational experiments).

There are many studies applying feature selection to a variety of problems in the areas of

computational biology and Bioinformatics. Saeys et al. (2007) provides an excellent review of

those problems and applications. In this regard, two well-studied algorithms are evolutionary

and population based algorithms. For instance, Yongming et al. (2009) developed a Genetic

Algorithm (GA) for selecting features. Chuang et al. (2009) developed a hybrid algorithm

where a TS guides the Particle Swarm Optimization (PSO) algorithm as a local search. In

another study, Unler and Murat (2010) implemented a PSO algorithm where relevancy and

dependency of features are dynamically checked. The PSO algorithm of Chuang et al. (2011)

uses the k-Nearest Neighbor (kNN) as an objective function criterion. Yang and Olafsson (2009)

used nested partitions method as a local search. Kabir et al. (2012) proposed a hybrid Ant

Colony Optimization (ACO) to be used within Wrapper and Filter methods. Jain et al. (2018)

proposed a hybrid model for cancer classification, where the main component of the model

is a PSO-based algorithm. The model was shown to obtain better sets of features (in terms

of classification accuracy and the number of selected genes) than available methods. Ghosh

et al. (2019) proposed a Memetic Algorithm (MA) for gene selection. More precisely, they

utilized a recursive MA and tested it on seven microarray datasets. The developed algorithm

was reported to obtain promising results.

For details of other non-optimization-based methods, we refer the interested reader to Ur-

banowicz et al. (2018), who investigates a set of filter-style feature selection algorithms aiming

at developing efficient algorithms and tackling large scale and various datasets, Kuncheva and

Rodriguez (2018), who performs a comparative study investigating performance of certain fea-

ture selection methods on sets of high-dimensional datasets, and to Shukla et al. (2019), who

investigates several Filter methods.

Although most of the studies on feature selection have focused on benchmark and stan-

dard datasets and applications other than computational biology and Bioinformatics, there

are several studies related to Bioinformatics, more particularly, on gene expression datasets.

For example, Albrecht (2006) applied an algorithm on a gene expression data of Leukemia.

The algorithm revealed three genes with zero errors. Fan and Chaovalitwongse (2010) ap-

plied an optimization algorithm to select weighted and unweighed features with the objective

of maximizing a “correct classification of data”. Their findings related to several biological

datasets including epilepsy, breast cancer, heart disease, diabetes and liver disorders revealed

that the algorithm uses fewer features for classification, compared to the previous studies. Bar

et al. (2018) discusses an interesting application of feature selection for pathology detection

in chest X-rays, in which the set of most informative features are selected. The proposed

method was tested on a dataset of about 600 samples. Kong and Yu (2018) developed an

Embedded-based method, and tested it on two datasets in the contexts of breast and kidney
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cancers. The feature selection method of Emura et al. (2019) was applied on the lung cancer

datasets and was shown to deliver an optimal subset of genes for prediction. The approach

of Pati et al. (2019) includes first grouping genes with similar gene expressions into clusters,

and then selecting informative genes from each cluster. They applied the method on several

publicly accessible datasets.

The usage of more than one criterion as an evaluation measure for feature selection has

also been studied. Wang and Huang (2009) formulated feature selection as a multi-objective

optimization problem. Vieira et al. (2010); Vieira et al. (2012) used fuzzy models in classifica-

tion. This allows flexibility in defining objectives and in weighting different objectives. For this

purpose, they developed an ACO algorithm with objectives of both minimizing the number

of features and classification error. Dashtban et al. (2018) introduced a multi-objective bat

algorithm for selecting genes from cancer datasets. The studies of Dos Santos et al. (2018);

Lai (2018) utilized multi-objective genetic and swarm optimization algorithms for feature and

gene selection applications. Recently, González et al. (2019) developed a multi-objective evo-

lutionary algorithm and proposed solutions for a Wrapper-based method.

To the best of our knowledge, the only studies on developing combinatorial optimization

models, and mathematical programming formulations for feature selection, in particular, in

Bioinformatics are due to Cotta et al. (2004); Berretta et al. (2005); Berretta et al. (2008).

They call their model (α,β)-k Feature Set Problem (FSP). The model differs from previous

studies in that it aims to obtain the minimum number of features such that similarities between

entities of the same class and differences between entities of different classes are maximized.

The major drawbacks of their formulation are that it relies on standard solvers, and therefore,

it can only solve small and medium sized datasets (usually many biological datasets are large),

and that their methods are unweighted (in contrast to this research thesis, they have not

modeled the cost of features). Later, Ravetti and Moscato (2008) and Ravetti et al. (2009)

applied the (α, β)-k FSP to select features from the Alzheimer’s Disease and Prostate Cancer

datasets. As discussed by the authors, the selected features led to novel biomarkers with better

accuracy for prediction of those diseases.

2.4 Research motivation

As discussed in Section 2.3, there exists only a few studies on the combinatorial optimization

methods for the (α, β)-k Feature Set Problem (FSP). Although those studies utilized both ex-

act and heuristic methods, they have several drawbacks and limitations. The major limitation

of the exact methods is that they rely on the standard solver CPLEX, and hence, are compu-

tationally very expensive (see for example Cotta et al. (2004); Berretta et al. (2008)). Having

said that, they are unable to be applied to large datasets, and not to mention that many real

world applications of (α, β)-k FSP include large datasets, and hence, they demand for effec-

tive and efficient methods. As heuristic algorithms, the major drawback of the algorithms of
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Paula (2012) is that they rely on general heuristics and randomized elements developed for the

traditional combinatorial optimization problems, whereas it is well accepted in the literature

that problem-driven local searches usually lead to superior outcomes.

In addition to those limitations, the cost associated with selecting features was not studied

by Cotta et al. (2004); Berretta et al. (2008); Paula (2012). This is indeed important because in

practice features may have different distinguishing factors including cost, importance, impact,

dependency on other features, etc. These limitations and drawbacks are the main motivations

behind this research. More importantly, this research aims to overcome the limitations of

the existing methods by developing efficient algorithms that are able to deliver high quality

solutions for large instances of the (α, β)-k FSP, and that in a reasonable amount of time. In

particular, this research may well be distinguished from the previous studies by

• developing greedy and problem-driven local searches, as well as hybrid algorithms (ex-

act+heuristic) in order to efficiently solve the (α, β)-k FSP;

• developing and implementing algorithms for the (α, β)-k FSP that are applicable to large

datasets, and are quite capable of providing effective and efficient solutions for those

datasets; and,

• including the cost associated with selecting features. The cost may model distinguishing

factors of features, for example, their importance, their correlation with other features,

their dependency on other features, etc.

2.5 Conclusion

In this chapter we stated the main research problem of this thesis. Feature selection is a

fundamental concept in the areas of machine learning, classification, and prediction with a huge

number of applications. A review of the state-of-the-art methods and techniques for feature

selection, as well as for the (α, β)-k FSP, revealed that there are gaps in the previous studies

in terms of efficient solution methods for the (α, β)-k FSP, particularly, for large datasets and

instances. The latter is very important because many applications of the (α, β)-k FSP include

dealing with large datasets.
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Chapter 3

Mathematical Models and

Properties

Abstract

This chapter investigates several mathematical properties of the (α, β)-k Feature Set Problem

(FSP). Furthermore, the chapter discusses a four-stage approach to solve the (α, β)-k FSP,

which leads to solving four optimization problems. We show mathematical connections among

these problems, and develop several bounds and propositions for them. These bounds and

propositions will be utilized in Chapters 4 and 5 to develop highly efficient algorithms and

solution methods for the (α, β)-k FSP.

3.1 Introduction

This chapter provides mathematical foundation of this thesis by exploring and developing

mathematical properties and bounds for the (α, β)-k Feature Set Problem (FSP). As discussed

in Chapter 2, this problem selects a minimum cost/cardinality set of features such that sim-

ilarities between entities of the same class and differences between entities of different classes

are maximized (Paula, 2012). Moreover, the chapter discusses a four-step decomposition-based

approach for solving the (α, β)-k FSP. This four-step approach decomposes the problem into

four combinatorial optimization problems (sub-problems). For this reason, this chapter also

studies models, bounds, and mathematical propositions for these sub-problems. In a previous

study by Paula (2012) a similar four-step approach was proposed in order to solve the (α, β)-k

FSP, however, that study did not investigate mathematical properties of the (α, β)-k FSP.

Let us start by explaining the four-step decomposition-based approach for solving the (α, β)-

k FSP. Recall from our earlier discussion in Chapter 2 that the (α, β)-k FSP has three positive

integer parameters: α, β, and k. The value of α represents the minimum number of features

that must explain the differences between any pair of entities of different classes. The value
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of β represents the minimum number of features that must explain the similarities between

any pair of entities of the same class, and k represents the number of features to be selected.

The four-step decomposition-based approach in solving the (α, β)-k FSP, which involves four

optimization problems (sub-problems), includes the followings.

• Step 1. Obtaining the maximum value of α (i.e. α∗ ∈ Z+) such that there exists a

feasible solution for an instance of the (α, β)-k FSP. Clearly, the value of α∗ depends

on the instance under investigation. However, as we will see later α∗ can be derived in

polynomial time (Sub-problem 1).

• Step 2. Obtaining the minimum number of features (i.e. k∗) necessary to explain the

dichotomy between the classes (in the weighted variant, k∗ refers to the minimum cost

set of features), considering that at least α∗ features do so for each pair of entities of

different classes (Sub-problem 2). This can be modeled as an integer program (IP), where

α∗ (obtained in Step 1) is a parameter. This problem is known as the Min k (α, β)-k

Feature Set Problem (FSP). Obviously, any positive integer value less than α∗ is still

possible and will lead to a different value for k∗. If the cost of selecting features is unique,

then the problem is unweighted or unicost. Because there is no distinguishing factors to

model the importance of features. Otherwise, the problem is weighted. Interestingly,

the unweighted variant is more difficult to solve than the weighted variant (Vasko and

Wilson, 1986).

• Step 3. Obtaining the maximum value of β (i.e. β∗ ∈ Z+) such that a set of minimum

cost features are selected to explain the dichotomy between the classes, and at least α∗

features do so for each pair of entities of different classes. This can be modeled as an IP,

where α∗ and k∗ (obtained in Steps 1 and 2) are parameters. This problem is known the

Max β (α, β)-k Feature Set Problem (FSP). Notice that this step maximizes the internal

consistency of the entities in the same class; hence, it provides a more robust feature set.

In fact, in the Max β (α, β)-k FSP, the values of α∗ and k∗ are known, and the set of

features is sought (Sub-problem 3).

• Step 4. Among alternative minimum cost set of features (each with the cost of k∗),

obtaining one that provides more explanations (coverage) in total, either to the differences

between the classes or similarity within entities in the same class. This may be modeled

as an IP, where α∗, β∗, and k∗ (obtained in the previous steps) are parameters. This

optimization problem is called the Maximum (Max) Cover (α, β)-k Feature Set Problem

(FSP) (Paula, 2012) (Sub-problem 4). The solution to the Max Cover (α, β)-k FSP is a

minimum cost set of features that maximizes the similarities between entities of the same

class and the differences between entities of different classes, and has more explanations

(coverage) in total.

Notice that in Step 1 the value of α∗ is determined such that there exists a feasible solution

for an instance of the (α, β)-k FSP. Therefore, we already know that at least one such set of
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features exists. This along with the fact that we implement a four-step approach to solve the

(α, β)-k FSP imply that Steps 2, 3, and 4 are guaranteed to deliver a feasible solution. Finally,

we need to efficiently solve each step in order to obtain high quality solutions for the (α, β)-

k FSP. To do so, we will design and develop efficient algorithms and methods in Chapter 4

and Chapter 5. These algorithms and solution methods utilize the bounds and properties

that we develop in this chapter. Such a study into mathematics of the (α, β)-k FSP has not

previously been performed. The major contribution of this chapter lies in developing bounds

and mathematical properties and propositions for the (α, β)-k FSP.

The remainder of this chapter is organized as follows. Section 3.2 defines concepts and

mathematical notations. Section 3.3 provides a graph representation for the (α, β)-k FSP

similar to the one discussed in Chapter 2, however, focuses on the problem’s concepts rather

than definition. The mathematical models will be discussed in Section 3.5. Lower and upper

bounds, and properties and propositions for the (α, β)-k FSP as well as their proofs will be

discussed in Section 3.6 and Section 3.7. The chapter ends with a few conclusions in Section 3.8.

3.2 Definitions and notations

Before going into the details of mathematical models, bounds, and propositions we first define

all concepts and mathematical notations. As stated earlier in Chapter 2, the problem of this

research is to develop efficient algorithms and solution methods for the (α, β)-k Feature Set

Problem (FSP).

Let J = {1, . . . , n}, where |J | = n, be the set of all features, out of which a set J∗ ⊆
J , which has the minimum cost/cardinality, must be chosen, and P = {Pj},∀j ∈ J , be

the set of profiles of features. Also, we have two sets of elements (sets of universes): I1 =

{I1i}, i = 1, . . . ,m1, |I1| = m1 (pairs of entities of different classes), and I2 = {I2i}, i =

1, . . . ,m2, |I2| = m2 (pairs of entities of the same class). The set of all elements is then

I = I1 ∪ I2. For the reasons that we will discuss in Chapter 4, we may use words feature and

column interchangeably, and words element and row.

A profile Pj of feature j can be defined by a set of binary values, and by observing that in

which elements feature j has a value of 1 and in which it has a value of 0. We may characterize

this by parameter aij ∈ {0, 1},∀i ∈ I1 ∪ I2, j ∈ J . Equivalently, if feature j has a value of 1

in element i we may say feature j explains or covers element i. Thus, Pj is a list of elements

that feature j covers. Typically, feature j may not cover all elements.

The cost of feature j represents the cost, weight, priority, importance, etc. of the feature.

For this reason, parameter cj ∈ R+,∀j ∈ J denotes the cost of feature j. Thus, if feature j is

chosen, it incurs a cost of cj . One special case is where cj = C,∀j ∈ J, C ∈ R+. This may also

be referred to the unweighted or unicost variant because all features have a unique cost, and

furthermore, the cost of features does not impact the solution.

The value of feature j (coverage degree), which is denoted by vj ∈ Z+,∀j ∈ J , is derived
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by counting the number of elements that feature j covers. Equation (3.1) calculates vj . In

Section 3.3 we will explain that when we represent the (α, β)-k FSP on a bipartite graph,

vertices represent features. Thus, the value of a feature is equivalent to the degree of the

associated vertex.

vj = Σi∈I1∪I2aij (3.1)

Interestingly, the coverage level of an element, i.e., the total number of times that an

element i,∀i ∈ I1 can be covered (by all features) may be denoted by αi ∈ Z+,∀i ∈ I1, and

can be calculated by Equation (3.2). In addition to this, α∗ ∈ Z+ (which is also the solution

to Sub-problem 1) may be derived by Equation (3.3).

αi = Σj∈Jaij ,∀i ∈ I1 (3.2)

α∗ = min
i∈I1

(αi) (3.3)

Firstly, notice that any value greater than α∗ will lead to infeasiblity. Secondly, recall

from our previous discussion that α∗ is the minimum number of features that explain the

differences between any pair of entities of different classes. Table 3.1 summarizes all sets,

indices, parameters and decision variables associated with the (α, β)-k FSP.

Given all sets, notations, parameters and decision variables, we may establish those by one

illustrative example. Assume we have five features, the set of which is J = {1, 2, 3, 4, 5},
where the set of their profile is P = {P1, P2, P3, P4, P5}, and two sets of elements I1 =

{I11, I12, I13, I14, I15, I16}, |I1| = 6, and I2 = {I21, I22, I23, I24, I25}, |I2| = 5. Table 3.2 shows

the sets as well as values for parameter aij . According to the table, feature 1 covers every ele-

ment of set I1 because it has a value of 1 for every element. More precisely, aij = 1,∀i ∈ I1, j =

1. On the other hand, feature 5 does not cover any element of I1 because aij = 0,∀i ∈ I1, j = 5.

The remaining features (features 2, 3, and 4) each covers certain elements of I1, and this can

be recognized by looking into the values of parameter aij ,∀i ∈ I1, j = 2, 3, 4. Now let us

discuss how we may obtain αi,∀i ∈ I1 (the values of which are shown in the last column of

the table). Remember that αi denotes the coverage level of element i,∀i ∈ I1 (by all fea-

tures); that is, the total number of features covering element i. Given αi, we may derive

α∗ = mini∈I1(αi) = min(2, 3, 3, 2, 3, 3) = 2. This implies that not every element of I1 can be

covered by more than α∗ = 2 features. For example, even if we choose all features, not all

elements of I1 can be covered by more than 2 features. Hence, based on the value of α∗ the

feasibility of a given coverage level may easily be evaluated. For instance, here α = 3 leads to

infeasibility. Further in the example, in order to obtain the value/degree of features, we follow

Equation (3.1), and obtain v1 = 11, v2 = 5, v3 = 6, v4 = 6, and v5 = 4.
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Table 3.1: A summary of all sets, indices, parameters and decision variables used in the (α, β)-k

Feature Set Problem.

Type Notation Explanation Value

Parameter J Set of all features J = {1, . . . , n}

Pj Set of profiles of features P = {Pj}

I1 The first set of elements (pairs of entities of

different classes)

I1 = {I11, . . . , I1,m1}, |I1| = m1

I2 The second set of elements (pairs of entities of

the same class)

I2 = {I21, . . . , I2,m2}, |I2| = m2

I The set of all elements I = I1 ∪ I2
aij States whether feature j covers element i aij ∈ {0, 1}

cj Cost (weight, priority, importance, etc.) of

feature j

cj ∈ R+

vj Value of feature j (coverage degree) vj = Σi∈I1∪I2aij , vj ∈ Z+

αi Coverage level of element i ∈ I1 by all features αi = Σj∈Jaij , αi ∈ Z+

Decision

variables

xj Takes 1 if feature j is chosen to be in a solu-

tion, and 0 otherwise

xj ∈ {0, 1}

α∗ Minimum number of features covering ele-

ments of I1

α∗ = mini∈I1(αi)

β∗ Minimum number of features covering ele-

ments of I2

β∗ ∈ Z+

Table 3.2: An illustrative example to explain the notations and concepts of (α, β)-k Feature

Set Problem (FSP). The example includes five features, and a total of 11 elements in two sets.

Element Profile αi

P1 P2 P3 P4 P5

I11 1 0 1 0 0 2

I12 1 1 0 1 0 3

I13 1 0 1 1 0 3

I14 1 0 1 0 0 2

I15 1 1 0 1 0 3

I16 1 0 1 1 0 3

I21 1 1 1 0 1 -

I22 1 1 0 0 1 -

I23 1 0 1 1 1 -

I24 1 0 0 0 1 -

I25 1 1 0 1 0 -

Value of feature (vj) 11 5 6 6 4
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Figure 3.1: An undirected bipartite graph associated with the data of Table 3.2. In this graph,

the black vertices (on the left) represent set I1, the gray vertices (on the right) represent set

I2, and the white vertices (in the middle) represent features. An edge between feature j and

element i is formed if and only if aij = 1. In this graph vertex “5” is not connected to any black

vertex because it does not cover any element of I1. Note that αi refers to the degree of black

vertices, and vj refers to the degree of white vertices. Finally, there are no edges connecting

black vertices (similarly, gray vertices, and white vertices). Additionally, there are no edges

connecting black and gray vertices.

3.3 A bipartite graph representation

We may present the (α, β)-k Feature Set Problem (FSP) on an undirected bipartite graph

G = (V,E,C), where V = J ∪ I1 ∪ I2 is the set of all vertices (nodes), |V | = |J | + |I1| + |I2|,
and E = {{eij |aij = 1, i ∈ I1, j ∈ J} ∪ {eij |aij = 1, i ∈ I2, j ∈ J}} is the set of all edges,

where |E| = Σj∈Jvj . Set C = {cj |∀j ∈ J} holds the features’ weights. Although a similar

representation was discussed in Chapter 2, the focus of this section is on illustrating the

notations and concepts of the (α, β)-k FSP rather than the problem’s definition. Figure 3.1

illustrates this bipartite graph, which has three groups of vertices. In fact, this graph is a

combination of two bipartite graphs (the left one includes vertices associated with sets J and

I1, and the right one includes vertices associated with sets J and I2). The vertices on the

left (colored black) represent elements of set I1, and the vertices on the right (colored gray)

represent elements of set I2. The vertices in the middle (colored white) represent features.

Graph G includes two sets of edges. The first set denotes features covering elements of I1.

This set is E1 = {eij |aij = 1, i ∈ I1, j ∈ J}. The second set denotes features covering elements

of I2, and is E2 = {eij |aij = 1, i ∈ I2, j ∈ J}. The set of all edges is E = E1 ∪E2. Notice that

edges are formed based on the values of parameter aij ,∀i ∈ I1 ∪ I2, j ∈ J . Here, the concept
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of 1 ≤ α ≤ α∗ features covering (“explaining”) the differences between any pair of entities of

different classes (elements of I1) implies that at least α edges must be adjacent to every black

vertex. Equivalently, the degree of every black vertex must be at least α. More precisely, the

(α, β)-k FSP can be re-stated as obtaining a set of minimum cost white vertices such that

• every black vertex has a minimum degree of 1 ≤ α ≤ α∗, α ∈ Z+; and

• every gray vertex has a minimum degree of 1 ≤ β ≤ β∗, β ∈ Z+.

3.4 Illustrative examples

In this section, we discuss two illustrative examples to further elaborate on how the solution

of the (α, β)-k FSP may look like. For those examples, we use biological datasets for Down

Syndrome (DS) and Alzheimer’s Disease (AD). We will later provide technical details of the

solution procedure.

Let start by the DS dataset, which was proposed by Lockstone et al. (2007) and contains 73

genes (column entitled “Feature”), and 15 samples with seven cases of DS and eight controls.

The size of this dataset makes it easy to understand the operation and outcome of the four-step

approach. Next, we explain the outcome of each step.

Step 1 aims to obtain α∗ (the largest number of features) such that the dichotomy between

each pair of entities of different classes can be explained by at least α∗ features. We used

Equation (3.3) and obtained α∗ = 50.

Given α∗, Step 2 delivers k∗ (the minimum number of features, and a list of features as a

by-product of the solution) such that at least α∗ features explain the dichotomy between each

pair of entities of different classes. We obtained k∗ = 65. The column “Min k” in Table 3.3

shows the selected list of features.

Given α∗ and k∗, Step 3 delivers a set of features such that the internal consistency (denoted

by β) of the entities in the same class is maximized (i.e. it provides a more robust feature

set). The column “Max β” in Table 3.3 shows the list of features we obtained. The maximum

internal consistency is 51, i.e. β∗ = 51.

Finally, in Step 4 we would like to obtain a list of features that not only satisfies the

conditions of α∗, k∗, and β∗, but also provides more explanations in total (denoted by the

“coverage” score), either to the differences between the classes or similarity within entities in

the same class. The list of such features is shown in column “Max Cover” in Table 3.3, with a

maximum coverage score of 5,341.

It is not difficult to see that the optimal solution includes 65 genes, i.e. k∗ = 65.

Now, let discuss the dataset of Alzheimer’s Disease (AD). The dataset was proposed by

Paula et al. (2011) and has 683 features, which are (pairs of) proteins, and 83 samples with 43

cases of AD and 40 controls. The dataset is denoted as ADMF.

Following Step 1, we obtain α∗ = 86. Given α∗ = 86, Step 2 delivered k∗ = 292 features,

which are listed in column “Min k” in Section 3.4. To obtain β∗, we proceed to Step 3. The
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Table 3.3: The selected list of features for dataset DS.

No. Feature Min k Max β Max Cover No. Feature Min k Max β Max Cover

1 DDR1 X X X 38 CCND2 X X X

2 CYP2E1 X X X 39 PRDX2 X X X

3 CYP2A6 X X X 40 DUSP1 X X X

4 RPL28 X X X 41 HLA-DPB1 X X X

5 SRP14 X X X 42 DDX3X X X X

6 RPL11 X X X 43 CTBP2 X X X

7 DAD1 X X X 44 HNRNPAB X X X

8 SPAG7 X X X 45 OGDH X X X

9 NONO X X X 46 CUL4A X X X

10 RPS6 X X X 47 DDX23 X X X

11 TCEB2 X X X 48 TIA1 X X X

12 RPL4 X X X 49 DCTD X X X

13 DSP X X X 50 ICMT X X X

14 WDR1 X X X 51 DARS X X X

15 KIAA0152 X X X 52 SCARB2 X X X

16 SF3B2 X X X 53 CCND3 X X X

17 MARCKSL1 X X X 54 LUM X X X

18 GLUL X X X 55 ALDH3A2 X X X

19 GNB2L1 X X X 56 VPS72 X X X

20 CD63 X X X 57 PLSCR1

21 BG537255 X X X 58 PPL X X X

22 RPL32 X X X 59 U47924 X X X

23 GRN X X X 60 MAP3K11

24 UBE2L3 X X X 61 THBD X X X

25 KDELR2 X X X 62 PEX3 X X X

26 LITAF X X X 63 EML2 X X X

27 RPL13A X X X 64 EIF1AY

28 ACTR2 X X X 65 NEFH X X X

29 LRP1 X X X 66 MN1 X X X

30 DAZAP2 X X X 67 STRN X X X

31 PAFAH1B1 X X X 68 CPA4

32 NCOR1 X X X 69 HERC3

33 S100A10 X X X 70 PCTK2

34 PPM1J X X X 71 USP9Y X X X

35 PHC2 X X X 72 CHI3L1

36 RERE X X X 73 MAST2

37 HMGN1 X X X
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list of features obtained during the step is shown in column “Max β” in Section 3.4, where

β∗ = 118. Finally, Step 4 leads to a coverage score of 581,608, and a list of features that is

shown in column “Max Cover” in Section 3.4. We should note that because it might be possible

that more than one optimal set of features exist with cardinality 292 is obtained during Step

2, Steps 3 and 4 aim to select a set, from such optimal sets, such that β and “coverage” are

maximized. Therefore, Steps 2, 3 and 4 produce different sets of features, however, each with

α∗ = 86, k∗ = 292, and β∗ = 118.

3.5 Mathematical models

The mathematical models for the (α, β)-k Feature Set Problem (FSP) were originally developed

in previous studies; see for example, Berretta et al. (2005) and Paula (2012). Following the

four-step approach explained in the beginning of this chapter, we discuss mathematical models

for every step, except for the first step because as we showed in Equation (3.3), α∗ can easily be

obtained, and without solving an optimization problem. The mathematical models for Steps

2, 3, and 4 are integer programs (IPs). We discuss these in Sections 3.5.1 to 3.5.3.

3.5.1 An integer program for the Min k (α, β)(α, β)(α, β)-k Feature Set Problem

Recall that Step 2 of the four-step approach determines k∗, which is the minimum cost for a set

of features. More precisely, Step 2 obtains a minimum cost set of features (among alternative

minimum cost sets of features) that explains the dichotomy between the classes, considering

that at least α∗ features do so for each pair of entities of different classes (elements of I1).

Paula (2012) calls the associated optimization problem with Step 2 the Min k (α, β)-k Feature

Set Problem (FSP). This problem can mathematically be modeled as an integer program (IP),

where α∗ (obtained in Step 1) is a parameter. Model IPMCFSP discusses this. The model has

one set of binary decision variables: xj , which takes 1 if feature j is selected, and 0 otherwise.

Model IPMCFSP

z = min
∑
j∈J

cjxj (3.4)

∑
j∈J

aijxj ≥ α,∀i ∈ I1, 1 ≤ α ≤ α∗, α ∈ Z+ (3.5)

xj ∈ {0, 1},∀j ∈ J (3.6)

The objective function (Equation (3.4)) minimizes the cost of selecting features. Equa-

tion (3.5) ensures every element of set I1 is covered by at least α features. This implies that
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Table 3.4: The selected list of features for dataset ADMF.

No. Feature Min k Max β Max Cover No. Feature Min k Max β Max Cover

1 BMP-6 1 X X 61 CNTF 1’-’PDGF-BB 1

2 EGF 1 62 CNTF 1’-’TNF-a 1

3 IL-1a 1 63 CNTF 1’-’ENA-78 1

4 IL-3 1 X X X 64 CNTF 1’-’IL-8 1

5 IL-6 1 65 EGF 1’-’GCP-2 1

6 MCP-3 1 X X X 66 EGF 1’-’GM-CSF 1 X X X

7 MIP-1d 1 X X X 67 EGF 1’-’IGFBP-2 1 X X X

8 PDGF-BB 1 68 EGF 1’-’IL-15 1 X X X

9 RANTES 1 69 EGF 1’-’NT-3 1

10 TNF-a 1 70 EGF 1’-’TNF-b 1 X

11 GCSF 1 71 EGF 1’-’AgRP(ART) 1

12 IL-11 1 X X X 72 EGF 1’-’ANG-2 1

13 ANG 1’-’EGF 1 X X X 73 EGF 1’-’AR 1

14 ANG 1’-’IL-1a 1 X X X 74 EGF 1’-’AXL 1 X X X

15 ANG 1’-’RANTES 1 X X X 75 EGF 1’-’bFGF X X X

16 BDNF 1’-’Eotaxin-3 1 76 EGF 1’-’BTC 1 X X X

17 BDNF 1’-’IL-1a 1 77 EGF 1’-’DTK 1 X X X

18 BDNF 1’-’IL-3 1 X X X 78 EGF 1’-’EGF-R 1 X X X

19 BDNF 1’-’PDGF-BB 1 X X X 79 EGF 1’-’FAS 1 X X X

20 BDNF 1’-’SCF 1 80 EGF 1’-’FGF-9 1 X X X

21 BDNF 1’-’GCSF 1 X X X 81 EGF 1’-’GITR 1 X X X

22 BLC 1’-’EGF 1 82 EGF 1’-’GRO 1 X X X

23 BLC 1’-’Eotaxin 1 83 EGF 1’-’GRO-a 1 X X X

24 BLC 1’-’GDNF 1 84 EGF 1’-’ICAM-1 1 X X X

25 BLC 1’-’IL-1a 1 X X X 85 EGF 1’-’IGF-1 SR X X X

26 BLC 1’-’IL-3 1 X X X 86 EGF 1’-’IGFBP3 1 X X X

27 BLC 1’-’IL-4 1 X X X 87 EGF 1’-’IGFBP-6 1 X X X

28 BLC 1’-’MCP-3 1 88 EGF 1’-’IL-1 RI 1

29 BLC 1’-’M-CSF 1 89 EGF 1’-’IL-11 1 X X X

30 BLC 1’-’MDC 1 X X X 90 EGF 1’-’IL-12 p40 1 X X X

31 BLC 1’-’PDGF-BB 1 91 EGF 1’-’IL-12 p70 1 X X X

32 BLC 1’-’RANTES 1 X X X 92 EGF 1’-’IL-2 Ra 1 X X X

33 BLC 1’-’TNF-a 1 93 EGF 1’-’IL-6 R 1 X X X

34 BLC 1’-’BTC 1 94 EGF 1’-’IL-8 1 X X X

35 BMP-4 1’-’EGF 1 X X 95 EGF 1’-’Lymphotactin 1 X X X

36 BMP-4 1’-’GDNF 1 96 EGF 1’-’MIF 1 X X X

37 BMP-4 1’-’IGF-1 1 97 EGF 1’-’MIP-1a 1 X X X

38 BMP-4 1’-’IL-1a 1 X X X 98 EGF 1’-’MIP-1b 1

39 BMP-4 1’-’LEPTIN(OB) 1 X X X 99 EGF 1’-’MIP-3b 1 X X X

40 BMP-4 1’-’PDGF-BB 1 X X X 100 EGF 1’-’NT-4 1 X X X

41 BMP-4 1’-’TNF-a 1 101 EGF 1’-’OSM 1 X X X

42 BMP-6 1’-’EGF 1 X X X 102 EGF 1’-’OST 1 X X X

43 BMP-6 1’-’IL-1a 1 X X X 103 EGF 1’-’PIGF 1

44 BMP-6 1’-’NT-3 1 X X 104 EGF 1’-’sTNF RI 1 X X X

45 BMP-6 1’-’PDGF-BB 1 X X X 105 EGF 1’-’TPO 1 X X X

46 BMP-6 1’-’BTC 1 106 EGF 1’-’TRAIL R3 1 X X X

47 BMP-6 1’-’IL-11 1 X X X 107 EGF 1’-’TRAIL R4 1 X X X

48 CK b8-1 1’-’EGF 1 108 EGF 1’-’uPAR 1

49 CK b8-1 1’-’Eotaxin-3 1 109 EGF 1’-’VEGF-B 1 X X X

50 CK b8-1 1’-’Fractalkine 1 X X X 110 EGF 1’-’VEGF-D 1 X X X

51 CK b8-1 1’-’GDNF 1 X 111 Eotaxin 1’-’NT-3 1 X X X

52 CK b8-1 1’-’IL-10 1 112 Eotaxin-2 1’-’IL-1a 1 X X X

53 CK b8-1 1’-’IL-1a 1 X X 113 Eotaxin-2 1’-’NT-3 1

54 CK b8-1 1’-’MCP-3 1 X X 114 Eotaxin-2 1’-’BTC 1 X X X

55 CK b8-1 1’-’M-CSF 1 X X X 115 Eotaxin-2 1’-’IL-11 1 X

56 CK b8-1 1’-’PDGF-BB 1 X X X 116 Eotaxin-2 1’-’IL-6 R 1 X X X

57 CK b8-1 1’-’TNF-a 1 117 Eotaxin-2 1’-’MIF 1

58 CK b8-1 1’-’ICAM-3 1 X X X 118 Eotaxin-3 1’-’IGFBP-2 1

59 CNTF 1’-’IL-1a 1 X X X 119 Eotaxin-3 1’-’IL-10 1

60 CNTF 1’-’NT-3 1 X X X 120 Eotaxin-3 1’-’IL-1a 1 X X X
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No. Feature Min k Max β Max Cover No. Feature Min k Max β Max Cover

121 Eotaxin-3 1’-’M-CSF 1 X 181 GDNF 1’-’ENA-78 1 X X X

122 Eotaxin-3 1’-’NT-3 1 X X X 182 GDNF 1’-’FAS 1 X

123 Eotaxin-3 1’-’TNF-a 1 183 GDNF 1’-’ICAM-1 1 X X X

124 Eotaxin-3 1’-’ANG-2 1 184 GDNF 1’-’IL-1 RI 1 X X X

125 Eotaxin-3 1’-’IL-11 1 X X X 185 GDNF 1’-’IL-11 1 X X X

126 Eotaxin-3 1’-’TRAIL R4 1 186 GDNF 1’-’IL-2 Ra 1 X X X

127 FGF-6 1’-’NT-3 1 X X X 187 GDNF 1’-’IL-6 R 1 X X X

128 FGF-6 1’-’RANTES 1 X X 188 GDNF 1’-’MIP-1a 1

129 FGF-6 1’-’TNF-a 1 189 GDNF 1’-’MIP-3b 1

130 FGF-6 1’-’AgRP(ART) 1 X X X 190 GDNF 1’-’OSM 1 X X X

131 FGF-6 1’-’ANG-2 1 X X X 191 GDNF 1’-’OST 1

132 FGF-6 1’-’AXL 1 192 GDNF 1’-’PIGF 1

133 FGF-6 1’-’FAS 1 193 GDNF 1’-’TRAIL R4 1

134 FGF-6 1’-’IL-1 RI 1 X X X 194 GDNF 1’-’VEGF-B 1

135 FGF-6 1’-’IL-11 1 X X X 195 GDNF 1’-’VEGF-D 1

136 FGF-6 1’-’IL-8 1 X X 196 GM-CSF 1’-’I-309 1

137 FGF-6 1’-’TPO 1 197 GM-CSF 1’-’IL-16 1

138 FGF-6 1’-’TRAIL R4 1 198 GM-CSF 1’-’IL-1a 1

139 FGF-6 1’-’uPAR 1 X X X 199 GM-CSF 1’-’IL-3 1 X X X

140 FGF-7 1’-’IGFBP-2 1 200 GM-CSF 1’-’IL-6 1

141 FGF-7 1’-’IL-1a 1 X X X 201 GM-CSF 1’-’M-CSF 1

142 FGF-7 1’-’IL-3 1 X X X 202 GM-CSF 1’-’PDGF-BB 1

143 FGF-7 1’-’IL-6 1 X X X 203 GM-CSF 1’-’TGF-b 1 X X X

144 FGF-7 1’-’M-CSF 1 204 GM-CSF 1’-’TNF-a 1 X X X

145 FGF-7 1’-’MIG 1 205 I-309 1’-’IL-1a 1

146 FGF-7 1’-’NT-3 1 X X X 206 I-309 1’-’BTC 1

147 FGF-7 1’-’PDGF-BB 1 207 I-309 1’-’IL-11 1 X X X

148 FGF-7 1’-’RANTES 1 208 I-309 1’-’TRAIL R4 1

149 FGF-7 1’-’TNF-a 1 209 IFN-g 1’-’IL-1a 1

150 Fit-3 Ligand 1’-’GDNF 1 210 IFN-g 1’-’M-CSF 1 X X

151 Fit-3 Ligand 1’-’IL-1a 1 211 IFN-g 1’-’MIP-1d 1 X X X

152 Fit-3 Ligand 1’-’NT-3 1 X X X 212 IFN-g 1’-’PDGF-BB 1 X X X

153 Fit-3 Ligand 1’-’TNF-a 1 213 IFN-g 1’-’TNF-a 1 X X X

154 Fit-3 Ligand 1’-’ANG-2 1 X X X 214 IFN-g 1’-’ANG-2 1

155 Fit-3 Ligand 1’-’FAS 1 X X X 215 IGF-1 1’-’IL-10 1

156 Fractalkine 1’-’IL-10 1 216 IGF-1 1’-’IL-1a 1 X X X

157 Fractalkine 1’-’IL-1a 1 217 IGF-1 1’-’PDGF-BB 1 X

158 Fractalkine 1’-’M-CSF 1 218 IGF-1 1’-’ANG-2 1

159 Fractalkine 1’-’TNF-a 1 X X X 219 IGFBP-1 1’-’ICAM-1 1 X X X

160 GCP-2 1’-’IGFBP-2 1 220 IGFBP-2 1’-’IL-10 1 X X X

161 GCP-2 1’-’IL-10 1 221 IGFBP-2 1’-’IL-13 1

162 GCP-2 1’-’IL-1a 1 X X 222 IGFBP-2 1’-’IL-16 1

163 GCP-2 1’-’NT-3 1 223 IGFBP-2 1’-’IL-1a 1 X X X

164 GCP-2 1’-’PDGF-BB 1 224 IGFBP-2 1’-’IL-3 1

165 GCP-2 1’-’TNF-a 1 X X X 225 IGFBP-2 1’-’IL-6 1

166 GCP-2 1’-’FAS 1 226 IGFBP-2 1’-’M-CSF 1

167 GDNF 1’-’IGFBP-2 1 X X X 227 IGFBP-2 1’-’NAP-2 1

168 GDNF 1’-’IL-1b 1 228 IGFBP-2 1’-’PDGF-BB 1 X X X

169 GDNF 1’-’IL-1ra 1 229 IGFBP-2 1’-’DTK 1

170 GDNF 1’-’IL-3 1 X X X 230 IGFBP-2 1’-’ICAM-3 1

171 GDNF 1’-’MIG 1 231 IGFBP-4 1’-’IL-1a 1 X X X

172 GDNF 1’-’NT-3 1 X X X 232 IGFBP-4 1’-’PDGF-BB 1 X X X

173 GDNF 1’-’PDGF-BB 1 233 IGFBP-4 1’-’ANG-2 1 X X X

174 GDNF 1’-’SCF 1 234 IL-10 1’-’LEPTIN(OB) 1

175 GDNF 1’-’TNF-b 1 235 IL-10 1’-’MIG 1 X X

176 GDNF 1’-’ANG-2 1 X X X 236 IL-10 1’-’NT-3 1 X X X

177 GDNF 1’-’AR 1 237 IL-10 1’-’TGF-b3 1

178 GDNF 1’-’AXL 1 238 IL-10 1’-’IL-11 1 X X X

179 GDNF 1’-’BTC 1 X X X 239 IL-10 1’-’TPO 1 X X X

180 GDNF 1’-’DTK 1 X X X 240 IL-10 1’-’TRAIL R4 1
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241 IL-10 1’-’uPAR 1 301 IL-1a 1’-’IGF-1 SR

242 IL-13 1’-’IL-15 1 302 IL-1a 1’-’IGFBP3 1

243 IL-13 1’-’IL-1a 1 X X X 303 IL-1a 1’-’IGFBP-6 1 X X X

244 IL-13 1’-’MCP-4 1 304 IL-1a 1’-’IL-1 RI 1

245 IL-13 1’-’NT-3 1 305 IL-1a 1’-’IL-11 1

246 IL-13 1’-’PDGF-BB 1 306 IL-1a 1’-’IL-12 p40 1 X X X

247 IL-13 1’-’TNF-a 1 307 IL-1a 1’-’IL-12 p70 1

248 IL-13 1’-’IL-11 1 X X X 308 IL-1a 1’-’IL-17 1

249 IL-15 1’-’IL-1a 1 309 IL-1a 1’-’IL-1R4 /ST2 1 X

250 IL-15 1’-’IL-3 1 310 IL-1a 1’-’IL-2 Ra 1 X

251 IL-15 1’-’IL-6 1 311 IL-1a 1’-’IL-8 1

252 IL-15 1’-’M-CSF 1 312 IL-1a 1’-’MIF 1

253 IL-15 1’-’TNF-a 1 313 IL-1a 1’-’MIP-1a 1

254 IL-15 1’-’ANG-2 1 X X X 314 IL-1a 1’-’MIP-1b 1 X X X

255 IL-15 1’-’FAS 1 315 IL-1a 1’-’MIP-3b 1

256 IL-16 1’-’IL-1a 1 316 IL-1a 1’-’MSP-a 1 X X X

257 IL-16 1’-’IL-3 1 X X X 317 IL-1a 1’-’NT-4 1 X X X

258 IL-16 1’-’NT-3 1 X X X 318 IL-1a 1’-’OSM 1

259 IL-16 1’-’PDGF-BB 1 319 IL-1a 1’-’OST 1

260 IL-16 1’-’TNF-a 1 320 IL-1a 1’-’PIGF 1

261 IL-16 1’-’IL-11 1 321 IL-1a 1’-’sTNF RI 1 X X X

262 IL-1a 1’-’IL-1b 1 322 IL-1a 1’-’TPO 1

263 IL-1a 1’-’IL-1ra 1 323 IL-1a 1’-’TRAIL R4 1

264 IL-1a 1’-’IL-2 1 324 IL-1a 1’-’uPAR 1

265 IL-1a 1’-’IL-4 1 X X 325 IL-1a 1’-’VEGF-B 1

266 IL-1a 1’-’IL-5 1 X X X 326 IL-1a 1’-’VEGF-D 1

267 IL-1a 1’-’IL-6 1 327 IL-1b 1’-’IL-3 1 X X X

268 IL-1a 1’-’IL-7 1 X X X 328 IL-1b 1’-’M-CSF 1 X X X

269 IL-1a 1’-’LIGHT 1 329 IL-1b 1’-’MDC 1

270 IL-1a 1’-’MCP-1 1 330 IL-1b 1’-’PDGF-BB 1

271 IL-1a 1’-’MCP-2 1 331 IL-1b 1’-’TNF-a 1

272 IL-1a 1’-’MCP-3 1 X X X 332 IL-1b 1’-’BTC 1

273 IL-1a 1’-’MCP-4 1 333 IL-1ra 1’-’M-CSF 1

274 IL-1a 1’-’MDC 1 X X X 334 IL-1ra 1’-’TNF-a 1

275 IL-1a 1’-’MIG 1 335 IL-2 1’-’IL-3 1 X X X

276 IL-1a 1’-’MIP-3a 1 X X X 336 IL-2 1’-’M-CSF 1 X

277 IL-1a 1’-’NT-3 1 X X X 337 IL-2 1’-’TNF-a 1

278 IL-1a 1’-’PARC 1 338 IL-2 1’-’FAS 1

279 IL-1a 1’-’SDF-1 1 339 IL-2 1’-’IL-11 1 X X X

280 IL-1a 1’-’TARC 1 340 IL-3 1’-’NT-3 1

281 IL-1a 1’-’TGF-b3 1 X X X 341 IL-3 1’-’ANG-2 1 X X X

282 IL-1a 1’-’TNF-b 1 342 IL-3 1’-’AXL 1

283 IL-1a 1’-’AgRP(ART) 1 X X X 343 IL-3 1’-’ENA-78 1

284 IL-1a 1’-’ANG-2 1 X X X 344 IL-3 1’-’FAS 1

285 IL-1a 1’-’AR 1 345 IL-3 1’-’FGF-9 1

286 IL-1a 1’-’AXL 1 X X X 346 IL-3 1’-’GITR-Light 1

287 IL-1a 1’-’BTC 1 347 IL-3 1’-’HGF 1

288 IL-1a 1’-’CCL-28 1 348 IL-3 1’-’ICAM-1 1

289 IL-1a 1’-’CTACK 1 349 IL-3 1’-’IGF-1 SR

290 IL-1a 1’-’DTK 1 X X X 350 IL-3 1’-’IL-1 RI 1

291 IL-1a 1’-’EGF-R 1 351 IL-3 1’-’IL-11 1 X

292 IL-1a 1’-’ENA-78 1 X X X 352 IL-3 1’-’IL-17 1

293 IL-1a 1’-’FAS 1 353 IL-3 1’-’IL-1R4 /ST2 1

294 IL-1a 1’-’FGF-9 1 354 IL-3 1’-’IL-8 1

295 IL-1a 1’-’GITR 1 X X X 355 IL-3 1’-’I-TAC 1

296 IL-1a 1’-’GITR-Light 1 X X X 356 IL-3 1’-’MIF 1 X X X

297 IL-1a 1’-’GRO 1 357 IL-3 1’-’MIP-1a 1

298 IL-1a 1’-’GRO-a 1 358 IL-3 1’-’MIP-3b 1 X X X

299 IL-1a 1’-’HGF 1 359 IL-3 1’-’NT-4 1

300 IL-1a 1’-’ICAM-1 1 360 IL-3 1’-’TPO 1
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361 IL-3 1’-’TRAIL R4 1 421 M-CSF 1’-’ANG-2 1

362 IL-3 1’-’VEGF-D 1 X X X 422 M-CSF 1’-’AXL 1

363 IL-4 1’-’PDGF-BB 1 423 M-CSF 1’-’bFGF X X X

364 IL-4 1’-’ANG-2 1 424 M-CSF 1’-’FAS 1

365 IL-4 1’-’TRAIL R4 1 425 M-CSF 1’-’FGF-9 1 X X X

366 IL-5 1’-’NT-3 1 X X X 426 M-CSF 1’-’GRO 1 X X X

367 IL-5 1’-’FAS 1 427 M-CSF 1’-’ICAM-1 1 X X X

368 IL-5 1’-’IL-11 1 428 M-CSF 1’-’IGFBP-6 1 X X X

369 IL-5 1’-’TRAIL R4 1 429 M-CSF 1’-’IL-1 RI 1

370 IL-6 1’-’M-CSF 1 430 M-CSF 1’-’IL-11 1

371 IL-6 1’-’NT-3 1 X X X 431 M-CSF 1’-’IL-8 1 X X X

372 IL-6 1’-’TNF-a 1 432 M-CSF 1’-’MIF 1

373 IL-6 1’-’TNF-b 1 X X 433 M-CSF 1’-’sTNF RI 1

374 IL-6 1’-’DTK 1 434 M-CSF 1’-’TPO 1

375 IL-6 1’-’ENA-78 1 435 M-CSF 1’-’TRAIL R4 1

376 IL-6 1’-’FAS 1 436 M-CSF 1’-’uPAR 1 X X X

377 IL-6 1’-’FGF-9 1 437 M-CSF 1’-’VEGF-B 1

378 IL-6 1’-’GITR-Light 1 438 M-CSF 1’-’VEGF-D 1

379 IL-6 1’-’GRO-a 1 439 MDC 1’-’NT-3 1 X X X

380 IL-6 1’-’IL-1 RI 1 440 MDC 1’-’TNF-a 1

381 IL-6 1’-’IL-11 1 X X X 441 MDC 1’-’ANG-2 1

382 IL-7 1’-’TNF-a 1 442 MDC 1’-’bFGF

383 IL-7 1’-’FAS 1 443 MDC 1’-’GRO-a 1

384 IL-7 1’-’GCSF 1 444 MDC 1’-’IGF-1 SR

385 IL-7 1’-’IL-12 p40 1 445 MDC 1’-’IL-1 RI 1

386 IL-7 1’-’TRAIL R4 1 446 MDC 1’-’IL-11 1

387 LEPTIN(OB) 1’-’M-CSF 1 447 MDC 1’-’IL-1R4 /ST2 1

388 LEPTIN(OB) 1’-’ANG-2 1 X X X 448 MIG 1’-’PDGF-BB 1

389 LIGHT 1’-’TNF-a 1 449 MIG 1’-’TNF-a 1 X X X

390 LIGHT 1’-’ENA-78 1 450 MIG 1’-’ANG-2 1

391 MCP-1 1’-’M-CSF 1 X X X 451 MIG 1’-’GCSF 1 X X X

392 MCP-1 1’-’NT-3 1 X X X 452 MIP-1d 1’-’NT-3 1 X X X

393 MCP-1 1’-’PDGF-BB 1 453 MIP-1d 1’-’TNF-a 1

394 MCP-1 1’-’TNF-a 1 454 MIP-1d 1’-’ANG-2 1 X X X

395 MCP-2 1’-’NT-3 1 X X X 455 MIP-1d 1’-’BTC 1 X X X

396 MCP-2 1’-’RANTES 1 X X X 456 MIP-1d 1’-’ICAM-1 1 X X X

397 MCP-2 1’-’FAS 1 X X X 457 MIP-1d 1’-’IL-11 1 X X X

398 MCP-3 1’-’NT-3 1 X X X 458 MIP-1d 1’-’IL-12 p40 1 X X X

399 MCP-3 1’-’TARC 1 459 MIP-1d 1’-’MIF 1 X X X

400 MCP-3 1’-’TNF-a 1 460 MIP-1d 1’-’TRAIL R4 1

401 MCP-3 1’-’ANG-2 1 X X X 461 MIP-1d 1’-’uPAR 1 X X X

402 MCP-3 1’-’BTC 1 X X X 462 MIP-3a 1’-’PDGF-BB 1

403 MCP-3 1’-’EGF-R 1 463 MIP-3a 1’-’TNF-a 1

404 MCP-3 1’-’ENA-78 1 464 MIP-3a 1’-’ANG-2 1

405 MCP-3 1’-’FAS 1 465 MIP-3a 1’-’AXL 1

406 MCP-3 1’-’IL-11 1 X X X 466 MIP-3a 1’-’bFGF

407 MCP-3 1’-’TRAIL R4 1 467 MIP-3a 1’-’TRAIL R4 1 X X X

408 MCP-3 1’-’VEGF-D 1 X X X 468 NAP-2 1’-’PDGF-BB 1 X X X

409 MCP-4 1’-’NT-3 1 X X X 469 NT-3 1’-’PDGF-BB 1

410 MCP-4 1’-’TNF-a 1 470 NT-3 1’-’RANTES 1

411 MCP-4 1’-’BTC 1 471 NT-3 1’-’SDF-1 1 X X X

412 MCP-4 1’-’ENA-78 1 472 NT-3 1’-’TGF-b 1 X X X

413 MCP-4 1’-’FAS 1 473 NT-3 1’-’TNF-a 1

414 MCP-4 1’-’IL-11 1 474 NT-3 1’-’ICAM-3 1 X X X

415 MCP-4 1’-’TRAIL R4 1 X X X 475 PARC 1’-’PDGF-BB 1 X X X

416 M-CSF 1’-’MIG 1 X X X 476 PARC 1’-’RANTES 1

417 M-CSF 1’-’MIP-3a 1 477 PARC 1’-’TNF-a 1 X X X

418 M-CSF 1’-’NT-3 1 478 PARC 1’-’GCSF 1 X X X

419 M-CSF 1’-’TARC 1 479 PDGF-BB 1’-’SCF 1

420 M-CSF 1’-’AgRP(ART) 1 X X X 480 PDGF-BB 1’-’SDF-1 1
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No. Feature Min k Max β Max Cover No. Feature Min k Max β Max Cover

481 PDGF-BB 1’-’TARC 1 541 RANTES 1’-’FAS 1 X

482 PDGF-BB 1’-’TGF-b 1 542 RANTES 1’-’FGF-4 1 X X X

483 PDGF-BB 1’-’TNF-b 1 X X X 543 RANTES 1’-’FGF-9 1 X X

484 PDGF-BB 1’-’AgRP(ART) 1 X X X 544 RANTES 1’-’GRO 1 X X X

485 PDGF-BB 1’-’ANG-2 1 X X X 545 RANTES 1’-’GRO-a 1 X X

486 PDGF-BB 1’-’AR 1 546 RANTES 1’-’HCC-4 1 X X X

487 PDGF-BB 1’-’AXL 1 547 RANTES 1’-’HGF 1 X X X

488 PDGF-BB 1’-’bFGF 548 RANTES 1’-’ICAM-1 1

489 PDGF-BB 1’-’BTC 1 X X X 549 RANTES 1’-’IGF-1 SR X X X

490 PDGF-BB 1’-’CCL-28 1 X 550 RANTES 1’-’IGFBP3 1 X X X

491 PDGF-BB 1’-’CTACK 1 551 RANTES 1’-’IGFBP-6 1 X X X

492 PDGF-BB 1’-’DTK 1 X 552 RANTES 1’-’IL-1 RI 1

493 PDGF-BB 1’-’EGF-R 1 553 RANTES 1’-’IL-11 1 X X

494 PDGF-BB 1’-’ENA-78 1 554 RANTES 1’-’IL-12 p40 1 X X X

495 PDGF-BB 1’-’FAS 1 X X X 555 RANTES 1’-’IL-17 1 X

496 PDGF-BB 1’-’FGF-4 1 556 RANTES 1’-’IL-1R4 /ST2 1 X X X

497 PDGF-BB 1’-’FGF-9 1 557 RANTES 1’-’IL-2 Ra 1 X X X

498 PDGF-BB 1’-’GITR 1 558 RANTES 1’-’IL-6 R 1

499 PDGF-BB 1’-’GITR-Light 1 559 RANTES 1’-’IL-8 1 X X X

500 PDGF-BB 1’-’GRO 1 X X X 560 RANTES 1’-’MIF 1 X X X

501 PDGF-BB 1’-’GRO-a 1 561 RANTES 1’-’MIP-3b 1 X X X

502 PDGF-BB 1’-’HCC-4 1 562 RANTES 1’-’OSM 1 X

503 PDGF-BB 1’-’HGF 1 563 RANTES 1’-’OST 1

504 PDGF-BB 1’-’ICAM-1 1 X 564 RANTES 1’-’PIGF 1 X X

505 PDGF-BB 1’-’IGF-1 SR 565 RANTES 1’-’TPO 1

506 PDGF-BB 1’-’IGFBP3 1 566 RANTES 1’-’TRAIL R3 1 X X X

507 PDGF-BB 1’-’IGFBP-6 1 567 RANTES 1’-’TRAIL R4 1 X X X

508 PDGF-BB 1’-’IL-1 RI 1 568 RANTES 1’-’uPAR 1 X X X

509 PDGF-BB 1’-’IL-11 1 569 RANTES 1’-’VEGF-D 1 X X X

510 PDGF-BB 1’-’IL-12 p40 1 570 SCF 1’-’TNF-a 1

511 PDGF-BB 1’-’IL-17 1 X X X 571 SCF 1’-’ENA-78 1

512 PDGF-BB 1’-’IL-2 Ra 1 572 SCF 1’-’GITR-Light 1

513 PDGF-BB 1’-’IL-6 R 1 X X X 573 SCF 1’-’IL-11 1

514 PDGF-BB 1’-’IL-8 1 574 SCF 1’-’VEGF-D 1

515 PDGF-BB 1’-’Lymphotactin 1 575 SDF-1 1’-’TNF-a 1

516 PDGF-BB 1’-’MIF 1 576 SDF-1 1’-’ANG-2 1 X X X

517 PDGF-BB 1’-’MIP-1a 1 577 SDF-1 1’-’BTC 1

518 PDGF-BB 1’-’MIP-1b 1 578 SDF-1 1’-’FAS 1 X X X

519 PDGF-BB 1’-’MIP-3b 1 X X X 579 SDF-1 1’-’IL-11 1 X X X

520 PDGF-BB 1’-’MSP-a 1 580 SDF-1 1’-’MIP-1a 1

521 PDGF-BB 1’-’OSM 1 X X X 581 SDF-1 1’-’MIP-3b 1

522 PDGF-BB 1’-’OST 1 582 SDF-1 1’-’VEGF-D 1 X X X

523 PDGF-BB 1’-’PIGF 1 583 TARC 1’-’TNF-a 1

524 PDGF-BB 1’-’spg130 1 584 TARC 1’-’FAS 1

525 PDGF-BB 1’-’sTNF RI 1 585 TARC 1’-’GCSF 1

526 PDGF-BB 1’-’TIMP-1 1 X 586 TARC 1’-’IL-11 1 X X X

527 PDGF-BB 1’-’TPO 1 X X X 587 TGF-b 1’-’TNF-a 1

528 PDGF-BB 1’-’TRAIL R3 1 588 TGF-b 1’-’ANG-2 1 X X X

529 PDGF-BB 1’-’TRAIL R4 1 X 589 TGF-b 1’-’AXL 1 X X X

530 PDGF-BB 1’-’uPAR 1 590 TGF-b 1’-’FAS 1 X X X

531 PDGF-BB 1’-’VEGF-B 1 X X X 591 TGF-b 1’-’IL-11 1 X X X

532 PDGF-BB 1’-’VEGF-D 1 592 TGF-b 1’-’IL-12 p40 1 X X X

533 RANTES 1’-’SDF-1 1 593 TGF-b 1’-’TPO 1 X X X

534 RANTES 1’-’TARC 1 594 TGF-b 1’-’TRAIL R4 1

535 RANTES 1’-’TNF-b 1 X X X 595 TGF-b 1’-’VEGF-B 1 X X X

536 RANTES 1’-’ANG-2 1 X 596 TGF-b3 1’-’TNF-a 1

537 RANTES 1’-’AR 1 X X X 597 TGF-b3 1’-’AXL 1

538 RANTES 1’-’BTC 1 X X X 598 TNF-a 1’-’TNF-b 1

539 RANTES 1’-’EGF-R 1 X X X 599 TNF-a 1’-’ANG-2 1 X X X

540 RANTES 1’-’ENA-78 1 X X X 600 TNF-a 1’-’AR 1
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No. Feature Min k Max β Max Cover No. Feature Min k Max β Max Cover

601 TNF-a 1’-’AXL 1 661 GCSF 1’-’IGF-1 SR

602 TNF-a 1’-’bFGF X X X 662 GCSF 1’-’IGFBP3 1 X X X

603 TNF-a 1’-’CTACK 1 X 663 GCSF 1’-’IGFBP-6 1

604 TNF-a 1’-’DTK 1 X X X 664 GCSF 1’-’IL-1 RI 1 X X X

605 TNF-a 1’-’EGF-R 1 665 GCSF 1’-’IL-11 1

606 TNF-a 1’-’ENA-78 1 666 GCSF 1’-’IL-1R4 /ST2 1

607 TNF-a 1’-’FAS 1 X 667 GCSF 1’-’NT-4 1 X X X

608 TNF-a 1’-’FGF-4 1 668 GCSF 1’-’OST 1

609 TNF-a 1’-’FGF-9 1 669 GCSF 1’-’TPO 1

610 TNF-a 1’-’GITR 1 670 GCSF 1’-’uPAR 1

611 TNF-a 1’-’GRO 1 671 GITR-Light 1’-’GRO 1

612 TNF-a 1’-’GRO-a 1 X X 672 GRO 1’-’IL-12 p70 1

613 TNF-a 1’-’HCC-4 1 673 ICAM-1 1’-’ICAM-3 1 X X X

614 TNF-a 1’-’HGF 1 674 ICAM-1 1’-’IL-12 p70 1 X X X

615 TNF-a 1’-’ICAM-1 1 X X X 675 ICAM-1 1’-’I-TAC 1

616 TNF-a 1’-’ICAM-3 1 X X X 676 ICAM-1 1’-’TECK 1

617 TNF-a 1’-’IGF-1 SR 677 IL-11 1’-’IL-12 p70 1 X X X

618 TNF-a 1’-’IGFBP3 1 X X X 678 IL-11 1’-’IL-17 1 X X X

619 TNF-a 1’-’IGFBP-6 1 679 IL-11 1’-’IL-1R4 /ST2 1 X X X

620 TNF-a 1’-’IL-1 RI 1 680 IL-11 1’-’I-TAC 1 X X X

621 TNF-a 1’-’IL-11 1 681 IL-11 1’-’TECK 1 X X X

622 TNF-a 1’-’IL-12 p70 1 682 IL-12 p70 1’-’OST 1 X X X

623 TNF-a 1’-’IL-17 1 X X X 683 IL-17 1’-’IL-6 R 1 X X X

624 TNF-a 1’-’IL-1R4 /ST2 1 X 684 Lymphotactin 1’-’TRAIL R4 1 X X X

625 TNF-a 1’-’IL-2 Ra 1 X X X 685 PIGF 1’-’TECK 1

626 TNF-a 1’-’IL-6 R 1 X X X 686 TIMP-1 1’-’TRAIL R3 1 X X X

627 TNF-a 1’-’IL-8 1

628 TNF-a 1’-’Lymphotactin 1

629 TNF-a 1’-’MIF 1

630 TNF-a 1’-’MIP-1a 1 X X X

631 TNF-a 1’-’MIP-1b 1 X X X

632 TNF-a 1’-’MIP-3b 1

633 TNF-a 1’-’NT-4 1

634 TNF-a 1’-’OST 1 X X X

635 TNF-a 1’-’sTNF RII 1 X X X

636 TNF-a 1’-’TPO 1

637 TNF-a 1’-’TRAIL R3 1

638 TNF-a 1’-’TRAIL R4 1

639 TNF-a 1’-’uPAR 1 X X X

640 TNF-a 1’-’VEGF-B 1

641 TNF-a 1’-’VEGF-D 1 X

642 TNF-b 1’-’IL-12 p40 1

643 ANG-2 1’-’GCSF 1 X X X

644 ANG-2 1’-’I-TAC 1 X X X

645 ANG-2 1’-’TECK 1 X X X

646 AR 1’-’GITR-Light 1

647 AXL 1’-’GRO-a 1

648 b-NGF 1’-’BTC 1

649 BTC 1’-’IL-12 p70 1 X X X

650 CCL-28 1’-’IGFBP3 1

651 CTACK 1’-’ICAM-1 1

652 EGF-R 1’-’GCSF 1

653 ENA-78 1’-’IL-12 p70 1

654 FAS 1’-’GCSF 1

655 FAS 1’-’IL-17 1

656 FAS 1’-’IL-1R4 /ST2 1

657 GCSF 1’-’GITR 1 X X X

658 GCSF 1’-’GRO 1

659 GCSF 1’-’GRO-a 1

660 GCSF 1’-’HGF 1
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at least α features must be in every feasible solution. Finally, Equation (3.6) ensures decision

variables only take binary values.

An optimal solution for Model IPMCFSP includes a set of features J∗ ⊆ J with the total

cost of z∗ = k∗. In the unweighted or unicost variant of the problem (where all features have

a unique cost) z∗ = |J∗| = k∗, where J∗ is the set of features in an optimal solution.

The reader may realize that the Min k (α, β)-k FSP is a variant of the Set k-Cover Problem

(SkCP), where feature profiles may be represented by columns, and elements of set I1 by rows;

see Chapter 4 for more details. Because the SkCP is proven NP-Hard, the Min k (α, β)-k FSP

is also NP-Hard.

3.5.2 An integer program for the Max βββ (α, β)(α, β)(α, β)-k Feature Set Problem

Step 3 of the four-step approach determines β∗ ∈ Z+, such that a set of minimum cost features

are selected to explain the dichotomy between the classes, and at least α∗ features do so for

each pair of entities of different classes. Paula (2012) calls this problem the Max β (α, β)-k

Feature Set Problem (FSP). Indeed, this problem maximizes the internal consistency of the

entities in the same class, and contributes to a more robust feature set. The Max β (α, β)-k

FSP can mathematically be modeled as an IP, where α∗ and k∗ (obtained in Steps 1 and 2) are

parameters. Model IPMBP shows this. The model has two types of integer decision variables:

xj ∈ {0, 1},∀j ∈ J , and β ∈ Z+.

Model IPMBP

z = maxβ (3.7)

subject to

∑
j∈J

cjxj ≤ k∗ (3.8)

∑
j∈J

aijxj ≥ α,∀i ∈ I1, 1 ≤ α ≤ α∗, α ∈ Z+ (3.9)

∑
j∈J

aijxj ≥ β,∀i ∈ I2 (3.10)

xj ∈ {0, 1},∀j ∈ J (3.11)

β ∈ Z+ (3.12)
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In Model IPMBP , the objective function (Equation (3.7)) maximizes β ∈ Z+. Equa-

tion (3.8) ensures always a minimum cost feature set will be selected, where the minimum cost

for the set is determined through solving the Min k (α, β)-k FSP; see Section 3.5.1. Equa-

tion (3.9) ensures every element of I1 is covered by at least α features, where 1 ≤ α ≤ α∗, α ∈
Z+ is a parameter obtained by using Equation (3.3). Equation (3.10) ensures every element of

I2 is covered by at least β features. Finally, Equations (3.11) and (3.12) ensure that decision

variables xj ,∀j ∈ J only take binary values, and β only takes positive integer values.

The optimal solution of Model IPMBP is a set of minimum cost features with the maximum

value for β. By looking into Equation (3.7) and Equation (3.10) one may realize that the Max β

(α, β)-k FSP can be considered as a variant of the well-known Maximum Satisfiability Problem

(MAX-SAT), which is proven NP-Hard. Therefore, the Max β (α, β)-k FSP is also NP-Hard.

3.5.3 An integer program for the Max Cover (α, β)(α, β)(α, β)-k Feature Set

Problem

The last step of the proposed four-step decomposition-based approach to solve the (α, β)-k

FSP obtains a set of features such that the set provides more coverage. More precisely, among

alternative minimum cost sets of features (each with the cost k∗) that cover every element

of I1 by at least α features, and every element of I2 by at least β features, Step 4 obtains a

set of features that provides more coverage (“explanations”) in total, either to the differences

between the classes or similarity within entities in the same class. This problem was previously

called the Max Cover (α, β)-k Feature Set Problem (FSP) (Berretta et al., 2005), and can

mathematically be modeled as an IP (Model IPMCP). In the model, α∗, β∗, and k∗ (obtained

in Steps 1, 2, and 3, respectively) are optimal value of parameters α, β, and k.

Model IPMCP

z = max
∑
j∈J

vjxj (3.13)

subject to

∑
j∈J

cjxj ≤ k∗ (3.14)

∑
j∈J

aijxj ≥ α,∀i ∈ I1, 1 ≤ α ≤ α∗, α ∈ Z+ (3.15)

∑
j∈J

aijxj ≥ β,∀i ∈ I2, 1 ≤ β ≤ β∗, β ∈ Z+ (3.16)
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xj ∈ {0, 1},∀j ∈ J (3.17)

In Model IPMCP , the objective function maximizes the total features value/degree. As we

discussed in Section 3.3, this criterion can model the total differences between the classes or

similarity within entities in the same class. The only decision variables of Model IPMCP are

xj ∈ {0, 1},∀j ∈ J .

In fact, the Max Cover (α, β)-k FSP obtains a feature set that leads to the largest covering

among all alternative solutions. That said, if there is a unique optimal solution for the previous

steps, solving the Max Cover (α, β)-k FSP will result in the same set of features. Intuitively,

one may realize that any solution for the Max Cover (α, β)-k FSP is feasible for the problems of

Min k (α, β)-k FSP and Max β (α, β)-k FSP. Finally, the Max Cover (α, β)-k FSP is a variant

of the Maximum Coverage Problem (MCP), which is NP-Hard, so does the Max Cover (α, β)-k

FSP.

3.6 Bounds

This section develops lower and upper bounds (LB and UB) for the Min k (α, β)-k Feature Set

Problem (FSP) and Max β (α, β)-k Feature Set Problem (FSP). The bounds will be utilized

in next chapters when designing and developing algorithms. In total, three bounds will be

discussed here.

Lemma 3.1. A lower bound for the Min k (α, β)(α, β)(α, β)-k Feature Set Problem (FSP).

Assume that the linear programming (LP) relaxation of Model IPMCFSP is given. Let Model

LPMCFSP represents this. Model LPMCFSP is obtained by relaxing binary decision variables

xj ∈ {0, 1},∀j ∈ J of Model IPMCFSP (thus, xj can take any non-negative values in the

ranges [0, 1]). Also, assume that the optimal objective function value of Model LPMCFSP is

k∗ ∈ R+. If all features’ costs are integer, then a tighter integer lower bound may be obtained

by dk∗e ∈ Z+. In other words, k∗ ≤ dk∗e ≤ k∗, where k∗ ∈ Z+ is the optimal objective function

value of Model IPMCFSP .

Proof. We provide the proof for both weighted and unweighted variants of the Min k (α, β)-k

FSP. Remember that in the unweighted variant cj = C,∀j ∈ J, C ∈ R+, and in the weighted

variant cj ∈ R+,∀j ∈ J . Let us start by the weighted variant (the unweighted variant is a

special case of the weighted one where all weights are unique).

Because the Min k (α, β)-k FSP is a minimization integer program we know that solving its

linear programming relaxation, which is obtained by relaxing the integrality constraints on

binary decision variables xj ∈ {0, 1},∀j ∈ J and allowing them to take any non-negative

values in the ranges [0, 1], results in a lower bound on the optimal objective function value

of Model IPMCFSP , i.e. k∗ ≤ k∗, where k∗ ∈ R+ is the optimal objective function value of

Model LPMCFSP , and k∗ is the optimal objective function value of Model IPMCFSP .
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Additionally, if cj ∈ Z+,∀j ∈ J , then any feasible solution to Model IPMCFSP must have an

integer objective function value. Therefore, we can round up k∗ to its nearest integer value.

Thus, dk∗e ≤ k∗.
For the unweighted variant of the Min k (α, β)-k FSP, the proof is followed by observing that

the objective function aims to minimize the number of features, which is always an integer

value. Also, k∗ can be rounded up as well. Note that if k∗ ∈ Z+, then we have obtained an

optimal solution for unweighted Min k (α, β)-k FSP. �

Example 3.1 illustrates how a lower bound can be developed by using Lemma 3.1.

Example 3.1. Assume for a given instance of the Min k (α, β)-k FSP k∗ = 64.57. Lemma 3.1

states that k∗ > 64.57, where k∗ is the optimal objective function value of Model IPMCFSP .

It also states that if cj ∈ Z+,∀j ∈ J , then k∗ ≥ d64.57e, i.e. k∗ ≥ 65.

Lemma 3.2. A lower bound for the Max βββ (α, β)(α, β)(α, β)-k Feature Set Problem (FSP).

Assume an optimal set of features (J∗) is given for the Min k (α, β)-k FSP. An integer lower

bound β ∈ Z+ on the optimal objective function value of Max β (α, β)-k FSP may be derived

by calculating the value of β for this solution.

Proof. Proof is followed by observing that the Max β (α, β)-k FSP is to select the best solution,

among all optimal solutions of the Min k (α, β)-k FSP, according to the criterion of maximizing

the value of β. This is because according to Model IPMBP , any feasible solution for Model

IPMCFSP is indeed feasible to Model IPMBP . Hence, the optimal solution of the Min k

(α, β)-k FSP must also be a feasible solution for the Max β (α, β)-k FSP. Because the Max β

(α, β)-k FSP is a maximization problem a feasible solution is always a lower bound solution.

Therefore, the value of β for this solution, which we denote by β ∈ Z+ is a lower bound for

β∗ ∈ Z+, where β∗ is the optimal value of β. Equation (3.18) shows the calculation of β.

β = min
i∈I2

(
∑
j∈J∗

aijxj) (3.18)

�

Example 3.2 shows how a lower bound on the value of β∗ may be obtained by utilizing

Lemma 3.2.

Example 3.2. Given the data of Table 3.2, assume an optimal solution for the Min k (α, β)-k

FSP is given as J∗ = {1, 2, 3}, where k∗ = 3 (features have a cost of 1). For this solution the

value of βi,∀i ∈ I2 can be calculated. This is shown in the right most column of Table 3.5. By

using Equation (3.18), β = min(4, 3, 4, 2, 3) = 2. Thus, β∗ ≥ 2.

Lemma 3.3. An upper bound for the Max βββ (α, β)(α, β)(α, β)-k Feature Set Problem (FSP).

Given the optimal objective function value for the linear programming (LP) relaxation of Max

β (α, β)-k FSP, i.e. β̄∗, a tighter integer upper bound may be obtained by bβ̄∗c ∈ Z+, i.e.

bβ̄∗c ≥ β∗, where β∗ is the optimal objective function value for the Max β (α, β)-k FSP.

39



3.7. Mathematical properties

Table 3.5: An illustrative example to explain obtaining a lower bound on the optimal objective

function value of the Max β (α, β)-k Feature Set Problem (FSP). The lower bound is obtained

through solving the Min k (α, β)-k Feature Set Problem.

Element Profile αi

P1 P2 P3 P4 P5

I11 1 0 1 0 0 2

I12 1 1 0 1 0 3

I13 1 0 1 1 0 3

I14 1 0 1 0 0 2

I15 1 1 0 1 0 3

I16 1 0 1 1 0 3

βi

I21 1 1 1 0 1 4

I22 1 1 0 0 1 3

I23 1 0 1 1 1 4

I24 1 0 0 0 1 2

I25 1 1 0 1 0 3

Value of feature (vj) 11 5 6 6 4

Proof. Proof is exactly same as proof of Lemma 3.1. The only difference is that the Max β

(α, β)-k FSP is a maximization problem, whereas the Min k (α, β)-k FSP is a minimization

problem. Thus, we replace de by bc. �

Example 3.3 illustrates how an upper bound for the Max β (α, β)-k FSP may be obtained

by solving the linear programming relaxation of Max β (α, β)-k FSP.

Example 3.3. Presume we are given an instance of the Max β (α, β)-k FSP, which has

an optimal solution to its linear programming relaxation wit the objective function value of

β̄∗ = 51.20. Lemma 3.3 states that β∗ ≤ 51.

3.7 Mathematical properties

We investigate and develop several properties and propositions of the Min k (α, β)-k Feature

Set Problem (FSP), the Max β (α, β)-k Feature Set Problem (FSP), and the Max Cover (α, β)-

k Feature Set Problem (FSP). Later in Chapters 4 and 5 we utilize those properties in order to

design and develop algorithms and solution methods. According to the computational results

reported in Chapters 4 and 5, those properties and propositions tremendously impact capability

of the developed algorithms.

Proposition 3.1. In the Min k (α, β)-k Feature Set Problem (FSP), if α = 1 and there is

a single feature j ∈ J that has a coverage value (degree) of |I1| (i.e. feature j is capable
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of covering every element of I1 exactly once, see Section 3.3), then an optimal solution only

includes this feature. If more than one such a feature exists, the one with the least cost is

chosen.

Proof. Recall that in the Min k (α, β)-k FSP, every element of I1 (the first set of elements)

must be covered by at least α features. Given α = 1, the optimal solution includes only one

feature if and only if that feature covers all elements of I1. If such a feature j ∈ J exists it

must have a value (degree) of vj = |I1|. Note that if more than one such a feature exists, the

one with the minimum cost is chosen. Therefore, k∗ = minj∈J∗|vj=|I1|(cj), and J∗ = {j}. �

Proposition 3.2. An alternative optimal solution for the Min k (α, β)-k Feature Set Problem

(FSP) can be obtained by iteratively optimizing Model IPMCFSP through including constraints

of the form
∑
j∈J∗ cjxj 6= k∗, J∗ ∈ P , where k∗ is the optimal objective function value for the

Min k (α, β)-k FSP, and P is the set of so obtained optimal solutions (an optimal solution J∗

is a set of selected features).

Proof. Observe that including Equation (3.19) in Model IPMCFSP , and re-optimizing the

model ensures the most recent optimal solutions are not explored during the next re-optimization

process.

∑
j∈J∗

cjxj 6= k∗, J∗ ∈ P (3.19)

After performing a re-optimization two outcomes are possible: 1) a new optimal solution for

the Min k (α, β)-k FSP is obtained, in which P is updated to include this solution, or 2) an

infeasible status is reported. If the former is the case, we may continue and obtain a pool

P of optimal solutions for the Min k (α, β)-k FSP (one new optimal solution per each re-

optimization) until the stopping condition (which may be an infeasiblity status) is met. If the

latter is the case, we have the proof that all optimal solutions for the Min k (α, β)-k FSP are

explored. �

Proposition 3.3. The Max β (α, β)-k Feature Set Problem (FSP) is the problem of selecting

the solution with the largest value of β, among all optimal solutions of the Min k (α, β)-k

Feature Set Problem (FSP).

Proof. The proof is followed by observing that any feasible solution for the Min k (α, β)-k

FSP is also feasible for the Max β (α, β)-k FSP. This is observed by having Equation (3.5)

and Equation (3.6) in Model IPMBP . Moreover, Equation (3.8) ensures that only optimal

solutions (or the best obtained solutions) for the Min k (α, β)-k FSP are allowed to be in any

feasible solution for the Max β (α, β)-k FSP. Therefore, the set of feasible solutions for Max β

(α, β)-k FSP is indeed the set of all optimal solutions for the Min k (α, β)-k FSP. Intuitively,

the solution with the largest value of β is selected for the Max β (α, β)-k FSP. �
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Proposition 3.4. Given an optimal solution for the Min k (α, β)-k Feature Set Problem (FSP),

a feasible solution for the Max β (α, β)-k Feature Set Problem (FSP) may be obtained in

polynomial time.

Proof. Assume an optimal solution for the Min k (α, β)-k FSP is available. By Proposition 3.3

we know that this solution is feasible for the Max β (α, β)-k FSP. Then, by using Equa-

tion (3.18) we can derive the value of β for this solution. Note that Equation (3.18) may easily

be calculated in O(n). �

Proposition 3.5. Given all optimal solutions for the Min k (α, β)-k Feature Set Problem

(FSP), the Max β (α, β)-k Feature Set Problem (FSP) will reduce to a sorting problem, and

hence, can be solved in polynomial time.

Proof. Proposition 3.3 states that the Max β (α, β)-k FSP includes selecting the solution with

the largest value of β, among all optimal solutions of the Min k (α, β)-k FSP. Given all optimal

solutions of the Min k (α, β)-k FSP, we have a pool of all feasible solutions for the Max β (α, β)-

k FSP. By applying Equation (3.18) we can obtain the value of β for each solution. Obtaining

the solution, out of this pool, with the largest value of β is indeed a sorting problem.

It is well known that the worst performance of the best sorting algorithm is O(n log n), where

n is the total number of elements. Here, n is the total number of optimal solutions for the Min

k (α, β)-k FSP. �

The importance of Proposition 3.5 is that it provides a polynomial time algorithm to solve

the Max β (α, β)-k FSP, provided that we have all optimal solutions for the Min k (α, β)-k

FSP. Notice that because the Min k (α, β)-k FSP can mathematically be modeled as an integer

program (Model IPMCFSP), practically, obtaining all of its optimal solutions is generally an

NP-Complete problem. Interestingly, if the Min k (α, β)-k FSP has a unique optimal solution,

then this solution must be optimal for the Max β (α, β)-k FSP as well. This is discussed in

Proposition 3.6.

Proposition 3.6. If the Min k (α, β)-k Feature Set Problem (FSP) has a unique optimal

solution, then this solution is also optimal for the Max β (α, β)-k Feature Set Problem (FSP).

Proof. The proof is based on Proposition 3.5 in which the pool of all feasible solutions for

the Max β (α, β)-k FSP can be constructed by obtaining all optimal solutions for the Min

k (α, β)-k FSP. As a special case, if the Min k (α, β)-k FSP has only one optimal solution,

then the pool includes only one feasible solution for the Max β (α, β)-k FSP, which is also the

optimal solution. �

Proposition 3.7. Given a lower bound on the optimal objective function value of the Max

β (α, β)-k Feature Set Problem (FSP), an optimal solution may be obtained through solving a

feasibility problem.
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Proof. Assume a lower bound on the objective function value of Max β (α, β)-k FSP is given.

Let β ∈ Z+ denotes this lower bound, and β∗ ∈ Z+ denotes the optimal objective function

value of the Max β (α, β)-k FSP; hence, β ≤ β∗. By iteratively increasing β until any further

increase leads to infeasiblity we can obtain β∗. �

One may notice that Proposition 3.7 may be implemented as an iterative exact algorithm in

order to optimally solve the Max β (α, β)-k FSP. Particularly, because β∗ ∈ Z+ the algorithm

terminates in a countable number of iterations. Also notice that Proposition 3.7 solves the

Max β (α, β)-k FSP through solving a feasibility problem, which has its own challenges if the

instances are large.

Proposition 3.8. The Max Cover (α, β)-k Feature Set Problem (FSP) is to select the solution,

among all optimal solutions of the Max β (α, β)-k Feature Set Problem (FSP), that has the

largest value of
∑
j∈J∗ vjxj, where J∗ ∈ P .

Proof. Similar to the proof of Proposition 3.3, the proof is followed by observing that any

feasible solution for the Max β (α, β)-k FSP is also feasible for the Max Cover (α, β)-k FSP.

This may be verified by observing that Equations (3.8) to (3.12) appear in Model IPMCP .

Moreover, Equations (3.14) and (3.16) ensure that only optimal solutions for the Min k (α, β)-

k FSP and Max β (α, β)-k FSP will be considered as feasible solutions for the Max Cover

(α, β)-k FSP. Additionally, the Max Cover (α, β)-k FSP selects the solution, out of all these

feasible solutions, that maximizes the total coverage value, that is
∑
j∈J∗ vjxj , J

∗ ∈ P , where

P is the set of all optimal solutions for the Max β (α, β)-k FSP. �

3.8 Conclusion

This chapter discussed integer programs for the Min k (α, β)-k Feature Set Problem (FSP),

Max β (α, β)-k FSP, and Max Cover (α, β)-k FSP. After establishing the definitions, notations,

and mathematical models, we discussed lower and upper bounds for the Min k (α, β)-k FSP and

Max β (α, β)-k FSP, in Section 3.6. Finally, in Section 3.7 we investigated the mathematical

properties of those three problems of Min k (α, β)-k FSP, Max β (α, β)-k FSP, and Max

Cover (α, β)-k FSP, and developed several propositions. Those propositions will be utilized in

Chapters 4 and 5 to develop algorithms and solution methods for solving the Min k (α, β)-k

FSP, Max β (α, β)-k FSP, and Max β (α, β)-k FSP.
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Chapter 4

Solution Methods for the Min k

(α, β)(α, β)(α, β)-k Feature Set Problem

The major outcome of this chapter entitled “Tight lower bounds and a hybrid heuristic for

a problem of selecting features” was peer-reviewed, and accepted for oral presentation at the

EURO 2016 international conference in Poznan, Poland, between 3 – 6 July 2016.

The second manuscript entitled “Efficient solution methods for the Min k (α, β)-k Feature Set

Problem” is under preparation to be submitted for a top tier journal very soon.

Abstract

In Chapter 3 we discussed that the Min k (α, β)-k Feature Set Problem (FSP) is a variant of

the well-known Set k-Cover Problem (SkCP), which itself is an extension of the classical Set

Cover Problem (SCP). This chapter develops heuristics and exact-based algorithms for both

weighted and unweighted Min k (α, β)-k FSP. While in the weighted variant there is a cost

associated with selecting a feature, in the unweighted variant the cost is unique and equal

across all features. The proposed heuristics include greedy construction and improvement

algorithms, and a very efficient exact+heuristic (EH) algorithm, which combines both heuristic

and exact algorithms, and obtains very high quality solutions for the Min k (α, β)-k FSP. The

benchmark instances for evaluating the performance of algorithms include one set of 11 real-

world unweighted instances ranging from medium to large, one set of 210 weighted instances

of the SCP ranging from small to medium, which are available in the literature, and one set of

125 randomly generated large and unweighted instances. Computational results over a total of

346 settings show that the proposed EH algorithm competes well against the state-of-the-art

algorithms. Moreover, the EH algorithm obtains several new best solutions for the standard

instances of the SkCP and for the randomly generated instances.
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4.1 Introduction

In Chapter 3 we discussed that the Min k (α, β)-k Feature Set Problem (FSP) is a variant of the

well-known Set k-Cover Problem (SkCP). The SkCP, which has many applications including

in computational biology, is an extension of the classical Set Cover Problem (SCP). While

in the SCP each row (equivalently, an element in the Min k (α, β)-k FSP) is required to be

covered by at least one column (equivalently, feature), in the SkCP each row is required to

be covered by at least α columns, where 1 ≤ α ≤ α∗, α ∈ Z+, such that the cost of selecting

columns is minimized. The case of α = 1 refers to the classical SCP. In the Min k (α, β)-k

FSP, we are looking for a set of minimum cost features such that every element of I1 (pairs of

entities of different classes) is covered by at least α features, where 1 ≤ α ≤ α∗, α ∈ Z+ is an

instance-dependent parameter. In other words, α represents the minimum number of features

that must explain the differences between any pair of entities of different classes.

The literature on the SCP is very rich. Several exact algorithms have been developed

for the SCP that obtain optimal solutions for the medium sized instances in a reasonable

amount of time (Balas and Ho (1980), Beasley (1987), Beasley (1990), Fisher and Kedia (1990),

Beasley and Jrnsten (1992), Balas and Carrera (1996)). Nevertheless, the SCP still remains

intractable in a general term, and hence, heuristics are of practical importance. One of the

fundamental heuristic algorithms for the SCP was developed by Chvatal (1979). Chvatal’s

idea is based on the cost of a column j, i.e. cj , and the number of currently uncovered rows

that could be covered by column j, i.e. rj . His greedy heuristic evaluates every column j

by cj/rj , and then selects the column with the minimum cj/rj . This evaluation criterion has

been used in many heuristic algorithms developed since. For example, Vasko (1984) improved

the column selection mechanism of the Chvatal’s greedy heuristic by adding a local search

procedure, and Baker (1981) merged several solutions into a reduced cost solution. Randomized

procedures have also been utilized along with the Chvatal’s greedy heuristic. For example Feo

and Resende (1989) created a list of columns that pass a certain criterion. Then a column

is randomly selected from this list. Another randomized idea has been implemented by Lan

et al. (2007); instead of selecting column j with the minimum cj/rj , their algorithm randomly

selects column j while the total number of random selections is controlled by a parameter.

Probably one of the best heuristic algorithms for the SCP is due to Caprara et al. (1999).

Their algorithm is a Lagrangian-based heuristic where the Lagrangian multipliers are obtained,

and utilized in a greedy heuristic to obtain a solution for the SCP. Then, a subset of columns

that have a high probability of being in an optimal solution is selected, and their corresponding

variables are set to 1. In fact, this results in an SCP instance with a reduced number of columns

and rows, on which the whole algorithm is iterated. Other less superior results were obtained

by the Lagrangian-based procedures of Haddadi (1997) and Ceria et al. (1998). A review

of the SCP algorithms has been brought in Caprara et al. (2000). Meta-heuristic have also

been studied for the SCP. An effective genetic algorithm with improved genetic operators was

developed by Beasley and Chu (1996). One efficient heuristic was developed by Yagiura et
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al. (2006). Their main idea is a “3–flip neighborhood”, which obtains a set of solutions, from

the current solution, by exchanging at most three subsets, followed by several procedures to

reduce the size of the neighborhood. A Tabu Search algorithm was studied in Caserta (2007).

Naji-Azimi et al. (2010) developed a meta-heuristic for the SCP where the construction and

improvement phases have some degree of randomization.

Although, most of the literature is on weighted SCP, where cj is the cost associated with

column j, several studies targeted the unweighted or unicost SCP; see for example Bautista

and Pereira (2007). The unweighted SCP is more difficult to solve than the weighted SCP

(Vasko and Wilson, 1986). Notice that in the unicost SCP every column has the same cost,

and thus, the optimal solution minimizes the total number of columns.

On the Set k-Cover Problem (SkCP), the literature is not as rich as on the SCP, although

SCP is a special case of the SkCP, where k = α = 1. The SkCP is more difficult to solve than

the SCP because of the multi coverage requirement (i.e. α > 1). Wang et al. (2016b) developed

two randomized heuristic algorithms for the SkCP. The core of their algorithms is a column

selection strategy. They tested their algorithms on 210 standard instances of the SCP. One of

the heuristics for the SkCP is developed by Pessoa et al. (2011) and Pessoa et al. (2013). Their

algorithm builds an initial solution by a Lagrangian-based heuristic, and then repairs it by

using a randomized greedy algorithm combined with path relinking. Further improvement to

this solution is obtained by two neighborhoods. The first neighborhood removes unnecessary

columns while the second neighborhood replaces a more expensive column with a less expensive

one. A dynamic programming framework has been discussed in Hua et al. (2010); the authors

have not reported any computational results though.

The remaining of this chapter is organized as follows. Section 4.2 provides a short introduc-

tion on the SCP and SkCP. Section 4.3 explains the Min k (α, β)-k FSP. Section 4.4 discusses

lower bound schemes for the Min k (α, β)-k FSP. Section 4.5 and Section 4.6 develop two greedy

algorithms for the Min k (α, β)-k FSP. The algorithm of Section 4.5 is a constructive algorithm

and aims to build an initial solution, and the algorithm of Section 4.6 is an improvement local

search algorithm and aims to improve the solution by removing redundant features. Section 4.7

explains the proposed exact+heuristic (EH) algorithm for the Min k (α, β)-k FSP. Section 4.8

reports the computational experiments of the algorithms on three sets of 346 instances, includ-

ing real-world, weighted, and randomly generated instances. Finally, the chapter ends with

conclusions.

4.2 The Set k-Cover Problem

Given a set of elements (rows) I = {1, . . . ,m} and a set P = {P1, . . . , Pn} of n sets whose union

equals I, where Pj ⊆ I, j ∈ J = {1, . . . , n}, a subset J∗ ⊆ J defines a cover of I if
⋃
j∈J∗ Pj = I.

Then, the Set Cover Problem or the SCP is to obtain a minimum cost cover. In fact, the SCP

identifies the least expensive subset of P whose union equals I (Garfinkel and Nemhauser, 1972).
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For example, consider I = {1, 2, 3, 4, 5} and P = {P1 = {1, 2, 3}, P2 = {2, 4}, P3 = {3, 4}, P4 =

{4, 5}, P5 = {1, 2}, P6 = {1, 2, 5}}, where
⋃
j∈J

Pj = I. Given cj = 1,∀j ∈ J (equal cost for

columns), the minimum cost subsets of P whose union is I has a cost of two, and the subsets

are P1 = {1, 2, 3} and P4 = {4, 5}. Thus, J∗ = {1, 4}.
This definition implies that every element of I must be covered at least once. The Set

k-Cover Problem or the SkCP is where every element of I must be covered by at least k (α)

columns (for the purpose of being consistent across the chapter we use α to denote k). The SCP

is a special case of the SkCP where α = 1. Given α = 2 in the above example, the minimum

cost subsets of P would have a cost of four, and the subsets are P1 = {1, 2, 3}, P3 = {3, 4},
P4 = {4, 5}, and P6 = {1, 2, 5}. Thus, J∗ = {1, 3, 4, 6}. Notice that in this example, we cannot

have α ≥ 3 because we cannot cover every element of I more than two times, no matter how

many subsets of J we select.

The SkCP can be modeled as an integer program (IP) and may be formulated as Model

IPSKCP (Garfinkel and Nemhauser, 1972):

Model IPSKCP

z = min
∑
j∈J

cjxj (4.1)

∑
j∈J

aijxj ≥ α,∀i ∈ I, 1 ≤ α ≤ α∗, α ∈ Z+ (4.2)

xj ∈ {0, 1},∀j ∈ J (4.3)

In Model IPSKCP , the objective function (Equation (4.1)) minimizes the total cost of

selecting columns, where cj ∈ R+,∀j ∈ J is the cost of selecting column j. In an unweighted

(unicost) SkCP, cj = C,∀j ∈ J , where C ∈ R+ is a scaler, and hence, the objective function

minimizes the total number of columns. Equation (4.2) ensures a feasible solution is obtained,

i.e. every element (row) is covered by at least α columns, where 1 ≤ α ≤ α∗, α ∈ Z+ is a

parameter, value of which is determined according to the instance. In this equation, parameter

aij takes a value of 1 if column j is capable of covering row i, and 0 otherwise. Note that, the

case of α = 1 in the right hand side of Equation (4.2) results in the SCP. Finally, Equation (4.3)

ensures decision variables are binary, and take 1 if column j is selected to be in the solution,

and 0 otherwise.

4.3 The Min k (α, β)(α, β)(α, β)-k Feature Set Problem

As discussed earlier in Section 3.5.1, the Min k (α, β)-k Feature Set Problem (FSP) can math-

ematically be modeled as an integer program (see Model IPMCFSP in Section 3.5.1). The
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model obtains a minimum cost set of features (among alternative minimum cost sets of fea-

tures) that explain the dichotomy between the classes, considering that at least α features do

so for each pair of entities of different classes (elements of I1).

An optimal solution to Model IPMCFSP is a vector x∗ = {xj |xj = 1, j ∈ J}, where J is the

set of all features. That is, a set of binary decision variables whose values are 1. Additionally,

an optimal set of features may be represented by set J∗ ⊆ J . In the unweighted variant of

the Min k (α, β)-k FSP (that is, all features have a unique cost) the objective function ensures

the minimum number of features is selected. As discussed earlier, one may realize that the

Min k (α, β)-k FSP is a variant of the Set k-Cover Problem (SkCP), where features represent

columns, and elements of set I1 represent rows.

4.4 Lower bounds

A lower bound (LB) would help to evaluate the quality of a given solution for the Min k (α, β)-k

Feature Set Problem (FSP), i.e. in the worst case how far a feasible solution would be from the

optimal solution. If the LB yields a feasible solution, then this solution is optimal for the Min

k (α, β)-k FSP. In addition to this, the algorithm of Section 4.7 relies on an LB to construct a

partially built solution for the Min k (α, β)-k FSP.

For the unweighted Min k (α, β)-k FSP, an intuitive LB on the optimal objective function

value is the value of α. Because Equation (3.5) states that every element must be covered by

at least α features. Thus, in order to have a feasible solution at least α features are needed,

although the number of features in a feasible solution might be grater than this. Nevertheless,

it guarantees no less than α features may construct a feasible solution. This LB, however, is

often loose, and is far from an optimal solution.

Another LB for both weighted and unweighted Min k (α, β)-k FSP may be developed

by solving a linear programming (LP) relaxation of Model IPMCFSP . Linear programming

relaxations have been studied for many integer and mixed integer programs including the Set

Cover Problem (see Lovász (1975)). The LP relaxation model of Min k (α, β)-k FSP, which

we named it Model LPMCFSP , may be obtained by relaxing Equation (3.6); that is by setting

0 ≤ xj ≤ 1,∀j ∈ J . Model LPMCFSP is illustrated in the following.

Model LPMCFSP

z = min
∑
j∈J

cjxj (4.4)

∑
j∈J

aijxj ≥ α, i ∈ I1, 1 ≤ α ≤ α∗, α ∈ Z+ (4.5)

0 ≤ xj ≤ 1,∀j ∈ J (4.6)
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Figure 4.1: Solution representation utilized in the heuristic algorithms for the Min k (α, β)-k

Feature Set Problem (FSP). The set of features are listed in the first row, and their status

(whether they are selected to be in a solution) are listed in the second row. According to the

second row, five features have been selected to be in the solution. Those features are “A”, “D”,

“G”, “H”, and “J”.

Feature A B C D E F G H I J

Status 1 0 0 1 0 0 1 1 0 1

Presume the optimal objective function value of Min k (α, β)-k FSP (in other words, the

optimal solution of Model IPMCFSP) and that of its LP relaxation (the optimal solution of

Model LPMCFSP) are available, and let z∗ ∈ Z+, and z∗ ∈ R+ denote those two, respectively.

We know that z∗ ≥ z∗, because the Min k (α, β)-k FSP is a minimization problem, and any

solution to Model IPMCFSP is feasible for Model LPMCFSP . We have observed that this LB

is of better quality than that of the previous one. If cj ∈ Z+,∀j ∈ J , this LB may even be

more tightened by rounding up z∗ to its nearest integer value, i.e. dz∗e ∈ Z+. This is fully

discussed in Lemma 3.1. Notice that rounding up z∗ to its nearest integer value does not

impact the associated variables, because variables xj are not enforced to take binary values.

On the contrary, Equation (4.6) enforces them to take non-negative values between 0 and

1. Therefore, we may not still have a feasible solution for the Min k (α, β)-k FSP. Later in

Section 4.7 we utilize this LB to construct a partially built solution for the EH algorithm.

4.5 A greedy construction algorithm

This section explains a greedy construction heuristic, which aims to construct initial solutions

for the Min k (α, β)-k Feature Set Problem (FSP). We shall start by explaining the solution

representation of the algorithm, which is utilized throughout this research thesis and in all

heuristic algorithms.

Because the Min k (α, β)-k FSP is to select a subset of features, out of a larger set, intuitively

we are interested in whether a specific feature should be selected or not. Thus, the decision is

limited to only two choices. We represent a solution for the Min k (α, β)-k FSP in a form of a

list, where the cardinality of the list (number of its elements) is equal to the total number of

features. Each element of the list takes a value of either 1, if the associated feature is selected

to be in a solution, or 0, if it is not. For instance, Figure 4.1 may represent an instance of

the Min k (α, β)-k FSP including 10 features. The features are listed in the first row, and

their status (whether they are selected to be in a solution) are listed in the second row. Here,

features “A”, “D”, “G”, “H”, and “J” have been selected to be in the solution.

The observation behind the proposed greedy construction heuristic, which we name it multi
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Column Row Cover Construction heuristic algorithm (or mCRCC for short), is that certain

features must always be in any feasible solution. In other words, if those features are not

included, certain elements may never be covered by exactly α features.

The mCRCC algorithm has two steps. In Step 1, it obtains the set of features that must

be in any feasible solution. We perform this by looking for those elements that satisfy αi =

α,∀i ∈ I1 (notice that at least one such element exists because this is the way we determined

α), and extracting the associated features. In Step 2, the mCRCC algorithm builds a feasible

solution by iteratively adding a set of features to the partially built solution. The mCRCC

heuristic is illustrated in Algorithm 4.1.

Upon adding a set of features (say α′) into the partially built solution we may group all

elements into two sets: those that have been covered by at least α features, and hence, we do

not need to consider them for more coverage, and those that have been covered by less than α

features, which we denote by Ĩ ⊂ I1. Indeed, we can construct a smaller instance of the Min k

(α, β)-k FSP over the sets of available features (J̃ ⊂ J) and Ĩ. Equation (4.7) illustrates how

α′ is re-calculated.

α′ = max
i∈Ĩ

α′i (4.7)

where, α′i is the number of additional features required to cover i ∈ Ĩ, and can be derived by

calculating the difference between α and the number of features that already covers i, and α′

is the minimum number of features that must be added into the partially built solution. To

select a set of α′ features, out of the set of available features (J̃) we incorporate information

regarding the importance of features. To do so, we calculate vj ,∀j ∈ J̃ by using Equation (4.8).

Then, α′ features with the maximum value of vj/cj are added into the partially built solution.

vj =
∑
i∈Ĩ

α′i (4.8)

Indeed, the features covering critical elements (those with the greatest value of α′i,∀i ∈ Ĩ , Ĩ ⊂
I1) are preferred the most.

4.6 A removal local search

Because the multi Column Row Cover Construction (mCRCC) heuristic is a construction

algorithm, and iteratively adds features into a partially built solution, redundant features may

be introduced into the solution. For this reason, we propose the Removal Local Search (RLS)

algorithm that improves a feasible solution by removing redundant features. The stopping

criterion of the algorithm is whenever removing features does not yield a feasible solution.

Algorithm 4.2 illustrates the RLS algorithm for the Min k (α, β)-k Feature Set Problem (FSP).

Algorithm 4.2 starts by finding a set J̃ ⊂ J∗ of redundant features. To do so, it checks

whether removing feature j,∀j ∈ J∗ (i.e. from the feasible solution) still keeps the solution
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Algorithm 4.1: The multi Column Row Cover Construction (mCRCC) heuristic algo-

rithm for constructing a feasible solution for the Min k (α, β)-k Feature Set Problem

(FSP). The mCRCC algorithm builds such a solution in two steps. In Step 1, it obtains a

set of features that must be in any feasible solution. In Step 2, it adds additional features

into the partially built solution until a feasible solution is obtained.

Input: A set J of features each with a value vj ,∀j ∈ J , and a cost cj , ∀j ∈ J ; a set

J∗ = {}, J∗ ⊆ J of selected features in a feasible solution; a set I1 = {1, . . . ,m1} of elements;

parameter α.

Output: A set J∗ ⊆ J of features (a feasible solution for the Min k (α, β)-k FSP).

Step 1. Obtaining a lower bound.

J ′ ← a set of features that must be in any feasible solution;

J∗ = J∗ ∪ J ′;

if the solution is feasible then
At least one optimal solution is obtained, where J∗ ⊆ J is the set of optimal features;

end

else
Step 2. Obtaining a feasible solution.

while the solution is not feasible do

Obtain sets J̃ ⊂ J (the set of available features), and Ĩ ⊂ I1 (the set of uncovered

elements);

Update α′ by using Equation (4.7), and calculate vj ,∀j ∈ J̃ by using Equation (4.8);

Update J ′ (sorted features in descending order of vj/cj , j ∈ J̃);

J∗ = J∗ ∪ {J ′1, . . . , J ′α′};
end

end

Report J∗;
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Algorithm 4.2: The Removal Local Search (RLS) algorithm, which obtains an improved

solution for the Min k (α, β)-k Feature Set Problem (FSP) by removing redundant features

from a given feasible solution. The RLS algorithm randomly removes redundant features

until any further removal results in an infeasible solution.

Input: The set J∗ (features in a feasible solution); a set J̃ = {}, which keeps redundant

features; a set I1 = {1, . . . ,m1} of elements; parameter α.

Output: An improved solution for the Min k (α, β)-k FSP (a set J∗ ⊆ J of features).

Step 1. Finding redundant features.

while the solution is feasible do

if J∗ \ {j|∀j ∈ J∗} is a feasible solution then

J̃ = J̃ ∪ {j};

end

end

Step 2. Removing redundant features.

while the solution is feasible or J̃ = {} do
r ← random(j|∀j ∈ J̃);

J∗ = J∗ \ {r};

J̃ = J̃ \ {r};
end

Report J∗;

feasible. Then, the algorithm iterates through J̃ , and randomly selects feature j, j ∈ J̃ , and

removes it from J∗. The algorithm keeps removing redundant features as long as the solution

remains feasible or J̃ = {}.

Notice that the RLS algorithm sequentially removes redundant features, i.e. one at a time.

This is essential because all redundant features are sequentially sought, and hence, independent

of each other. As a result, we must sequentially remove them in order to ensure the improved

solution remains feasible. In addition to this, the order in which the redundant features are

removed impacts the solution’s quality. For this purpose, as well as increasing the diversification

of the removal procedure, the algorithm performs a random removal. This means at every

iteration one redundant feature is randomly selected from the set of all redundant features,

and is removed from the solution.

4.7 An exact+heuristic algorithm

In this section we propose an exact+heuristic (EH) algorithm for the Min k (α, β)-k Feature

Set Problem (FSP). To the best of our knowledge and at the time of writing this thesis,

this algorithm obtains superior results for the Min k (α, β)-k FSP on both real-world and

randomly generated instances. Furthermore, we tested the algorithm on 210 standard instances

(weighted) of the Set Cover Problem (SCP), and observed that the EH algorithm obtains new
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best solutions for several instances.

The EH algorithm for the Min k (α, β)-k FSP combines both exact and heuristic algorithms

in order to solve the Min k (α, β)-k FSP. The EH algorithm starts by obtaining a lower bound.

Because the solution associated with the lower bound may not always be feasible, the EH

algorithm repairs the lower bound solution and obtains a feasible solution. Finally, the feasible

solution is improved in two steps: an exact step and a heuristic step. The EH algorithm is

summarized in Algorithm 4.3. The details of each step of the EH algorithm is discussed in the

next sections.

Algorithm 4.3: The exact+heuristic (EH) algorithm for solving the Min k (α, β)-k

Feature Set Problem (FSP). The EH algorithm has three steps. Step 1 obtains a lower

bound solution. Step 2 repairs the lower bound solution and obtains a feasible solution,

and improves the solution by performing a re-optimization. Step 3 further improves the

best obtained solution by applying the Removal Local Search (RLS) algorithm.

Input: Models IPMCFSP and LPMCFSP ; a set J of features, a set J∗ = {}, J∗ ⊆ J of selected

features in a feasible solution; a set I1 = {1, . . . ,m1} of elements; parameter α.

Output: A high quality solution (a set J∗ ⊆ J) for the Min k (α, β)-k FSP.

Step 1. Obtaining a lower bound.

Solve Model LPMCFSP to optimality, and let x∗ be the optimal solution;

if xj ∈ {0, 1}, ∀j ∈ J then

The lower bound solution is both feasible and optimal for the Min k (α, β)-k FSP;

J∗ = {j|xj = 1, j ∈ J};
end

else
Step 2. Obtaining a feasible solution.

Fix certain 0 < xj < 1 to 1, and enforce the remaining to take binary values;

Apply Algorithm 4.5, and let J∗ be the set of features;

if the solution is not optimal then
Step 3. Improving the best solution.

Remove redundant feature(s) by using the RLS algorithm (Algorithm 4.2);

end

end

Report J∗;

4.7.1 Obtaining a lower bound

In order to obtain a lower bound for the Min k (α, β)-k FSP, as well as a partially built solution,

we solve the linear programming (LP) relaxation of the Min k (α, β)-k FSP. The procedure is

summarized in Algorithm 4.4.

Algorithm 4.4 may result in a partially built solution for the Min k (α, β)-k FSP, which

is built by including all features that have a value of 1 for their associated variables into the

solution. After solving Model LPMCFSP not every xj variable may have an integer value. If
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Algorithm 4.4: A linear programming (LP) relaxation-based algorithm to obtain a lower

bound and a partially built solution for the Min k (α, β)-k Feature Set Problem (FSP).

Input: Model LPMCFSP ; a set J of features; a set J∗ = {}, J∗ ⊆ J of selected features in a

partially built solution; a set I1 of elements; parameter α.

Output: A partially built solution (a set of features) and a lower bound for the Min k (α, β)-k

FSP.

Solve Model LPMCFSP to optimality; let z∗ ∈ R+ be the optimal objective function value, and

x∗ the optimal solution;

if xj ∈ {0, 1}, ∀j ∈ J then

J∗ = J∗ ∪ {j|xj = 1, j ∈ J} (the optimal set of features);

end

else

J∗ = J∗ ∪ {j|xj = 1, j ∈ J} (a partially built solution);

end

Report J∗;

0 < xj < 1,∃j ∈ J , we have at least one fractional variable, which means the optimal solution

of Model LPMCFSP is not feasible for the Min k (α, β)-k FSP. Section 4.7.2 explains how we

repair this infeasible solution into a feasible one. On the other hand, if xj ∈ {0, 1},∀j ∈ J , the

optimal solution of Model LPMCFSP is both feasible and optimal for Model IPMCFSP , and

hence, we have the optimal set of features for the Min k (α, β)-k FSP.

4.7.2 Obtaining a feasible solution

Solving Model LPMCFSP will not always lead to a feasible solution for the Min k (α, β)-k

FSP. We have developed and implemented a procedure, which repairs an infeasible solution

into a feasible one by adjusting the values of non-negative decision variables. The procedure

is guaranteed to obtain a feasible solution for the Min k (α, β)-k FSP. Also, it simultaneously

improves the feasible solution. This procedure, which is summarized in Algorithm 4.5, performs

three operations: it ensures that all xj variables only take binary values (guarantee of obtaining

a feasible solution); it fixes certain xj variables to take a value of one, which results in a

partially built solution (for this reason, we introduced constraints in the form of xj = 1, j ∈ J
to Model IPMCFSP); and it improves the feasible solution by performing a re-optimization.

The outcome of this procedure is an upper bound solution for the Min k (α, β)-k FSP. It is

worth mentioning that the partially built solution greatly impacts the termination/convergence

of an exact solver. In fact, we observed that without introducing a partially built solution,

particularly for large instances of the Min k (α, β)-k FSP, the solver CPLEX may not obtain

a feasible solution even after 30 minutes of running.

Notice that the purpose of Algorithm 4.5 is twofold: obtaining a feasible solution for the

Min k (α, β)-k FSP by only solving a smaller instance of the Min k (α, β)-k FSP, and improving

the feasible solution by performing a re-optimization. Because we fix certain variables to take a
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Algorithm 4.5: An algorithm to build a feasible solution for the Min k (α, β)-k Feature

Set Problem (FSP). To do so, the algorithm ensures all xj variables take binary values,

fixes certain xj variables to take a value of one, and further improves the feasible solution.

Input: A partially built solution J∗ for the Min k (α, β)-k FSP (obtained by solving Model

LPMCFSP), a lower bound z∗ on the optimal objective function value.

Output: An improved feasible solution for the Min k (α, β)-k FSP.

while the stopping condition is not met do
Solve Model IPMCFSP , where xj = 1, ∀j ∈ J∗;

Let k∗ denotes the value of objective function, and J∗ be the set of features;

if z∗ 6= k∗ (optimality check) then
An upper bound solution is obtained, where the set of features is J∗;

end

end

Report J∗;

value of one, and we do not have a guarantee that this maintains solution’s optimality, we may

enforce redundant features into the solution. Therefore, the solution may further be improved.

This is discussed in Section 4.7.3.

If the number of fractional variables is large, there is a possibility that this procedure slowly

converges. In such a case one may initialize the EH algorithm by using the multi Column Row

Cover Construction (mCRCC) heuristic (Algorithm 4.1).

4.7.3 Improving the feasible solution

After obtaining an improved feasible solution for the Min k (α, β)-k FSP, there is a possibility

that redundant features have been entered into the solution. This is observed by the fact that

Algorithm 4.5 forces certain features into a feasible solution without a proof on whether those

features are part of an optimal set of features. Hence, we may further improve the solution by

applying the Removal Local Search (RLS) algorithm presented in Algorithm 4.2 in order to

remove redundant features.

4.8 Computational results

In this section we report the computational experiments of applying the exact+heuristic (EH)

algorithm, which is presented in Algorithm 4.3, on three sets of instances. All presented algo-

rithms have been implemented in the programming language Python 2.7, and all mathematical

models were also implemented in the programming language Python 2.7 via the solver CPLEX

12.5.0 Python API. The computing resource has Linux Ubuntu 14.04 LTS operating system

with 32 GB of memory and 12 cores of Intel R©Xeon CPU E5-1650 at 3.5 GHz. However, only

one thread has been used by the algorithms, in order to provide the most similar basis for

comparing the results with the available studies.
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The first set includes 11 real-world unweighted instances ranging from small to large. The

computational results of those instances are discussed in Section 4.8.1. The second set in-

cludes 210 standard weighted instances of the Set Cover Problem (SCP) ranging from small to

medium. In particular, several of those instances pose computational challenge for the exact

solvers. We discuss the computational results of those instances in Section 4.8.2. The third set

includes 125 randomly generated unweighted instances for the (α, β)-k Feature Set Problem

(FSP). Those instances have the same size, however, due to the their generation framework they

pose different computational challenge for the available solution methods. The computational

results of those instances are discussed in Section 4.8.3.

4.8.1 Computational results of real-world instances

The first set of instances includes two sub-sets of 11 real-world unweighted (unicost, i.e.

cj = 1,∀j ∈ J) instances. The first set includes six biological instances, and the second

set includes five large face recognition instances. We chose the first six instances because the

study of Paula (2012) has utilized the same instances to evaluate the performance of their

Variable Neighborhood Search+Tabu Search (VNS+TS) algorithm. We selected the second

five instances because they are large, and as the exact solvers are unable to solve them, they

can truly reflect the performance of the EH algorithm.

The basic information regarding those 11 real-world instances is shown in Table 4.1. The

first three columns are the name of the instances, number of features, which may represent

protein, genes, probes, SNPs, etc., and total number of entities, e.g. samples (of both Class

1 and Class 2). Each instance includes two classes (groups) of data: Class 1 and Class 2 (see

Chapter 2 for more details). The second three columns provide information on the associated

Min k (α, β)-k FSP of each instance. Column “|J |” gives the number of features, which

essentially is the same as the second column, and column “|I1|” gives the total number of

elements in the first set of elements. Recall from our earlier discussion in Section 2.2 that set

I1 includes pairs of entities of Class 1 and Class 2, and can be obtained by using Equation (2.1).

Column “α∗”, which is derived by using Equation (3.3), shows the optimal (maximum) value of

α (recall that α is the minimum number of features that must explain the differences between

any pair of entities of different classes). Obviously, α∗ depends on the instance, and any value

greater than α∗ results in an infeasible solution. The last column provides additional references.

Table 4.2 summarizes the outcomes of CPLEX, EH, and VNS+TS algorithm of Paula (2012).

Table 4.3 details those outcomes. Note that the outcomes of VNS+TS are only available for

the first six instances, and that they are available in ranges. Five criteria of percent of feasible

solution, percent of best solution, percent of optimal solution, average computation time (in

second), and average gap (from the best known solution) were used to evaluate each solution

method. Following those outcomes we can conclude,

• all methods obtain feasible solutions for all instances;
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Table 4.1: 11 real-world unweighted instances of the Min k (α, β)-k Feature Set Problem

(FSP), including six biological, and five large face recognition instances. In addition to the size

of each instance, which is reported in the second and third columns, the table provides size

of an instance of the Min k (α, β)-k FSP including “|J |” (number of features), “|I1|” (pairs of

entities of different classes), and α∗ (optimal value of α).

Instance No. of features No. of entities |J | |I1| α∗ Reference

ADMF 686 83 686 1720 86 Paula et al. (2011)

DS 73 15 73 56 50 Lockstone et al. (2007)

PD1 17099 105 17097 2750 3970 Scherzer et al. (2007)

PD2 1674 25 1674 144 760 Lesnick et al. (2007)

PC 3556 171 3556 7290 229 Chandran et al. (2007)

SM 525 1219 525 273834 22 Charlesworth et al. (2010)

0 all 1969 450 1969 32400 354 Haque et al. (2016)

1 all 3304 450 3304 32400 683 Haque et al. (2016)

2 all 4243 450 4243 32400 1016 Haque et al. (2016)

3 all 5436 450 5436 32400 1394 Haque et al. (2016)

4 all 2005 450 2005 32400 387 Haque et al. (2016)

• the largest number of optimal solutions were obtained by CPLEX, and that for around

91% of instances, followed by the EH algorithm for around 73% of instances. The

VNS+TS obtained optimal solution for only 33.3% on instances (over six instances);

• the greater number of optimal solutions reported by CPLEX paid its price by taking

almost 15 times longer than the EH; and,

• both CPLEX and EH have excellent average gaps. We were not able to report the

average gap of VNS+TS because only ranges for objective function values were reported

in Paula (2012).

With respect to the computation time of the EH algorithm, which on average is less than

five minutes and is around 15 times faster than CPLEX, its performance in obtaining optimal

solution for around 73% of instances is quite promising. To conclude this section, several points

can be highlighted:

• The percent of non-integer variables (column “Non-integer”) is a tiny fraction of the total

number of variables, in particular, for large instances. This is probably the argument

behind strong performance of the EH algorithm.

• The lower bounds are of excellent quality, and very close to the outcomes of the EH

algorithm. This is realized through values of column “GapLB”. Furthermore, we observed

that for all instances except for two instances of “SM” and “4 all”, the value of lower
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Table 4.2: Summary of the computational results of CPLEX, EH and VNS+TS for solving 11

real-world instances of Min k (α, β)-k Feature Set Problem (FSP).

Criterion CPLEX EH VNS+TS

Percent of feasible solution 100% 100% 100%

Percent of best solution 90.9% 72.7% 33.3%

Percent of optimal solution 90.9% 72.7% 33.3%

Average computation time 3882.30 258.70 30.61

Average gap 0.01 0.02 -

bound is equal to the optimal solution. Additionally, for those two instances the lower

bound is within 0.8% of optimality.

• As these 11 real-world instances are unweighted, they are more difficult to solve compared

to weighted instances. This is well documented in the literature for the Set Cover Problem

(Vasko and Wilson, 1986); inevitably, the same applies to the Min k (α, β)-k FSP. This

positively contributes into the already strong role of the EH algorithm in tackling the

Min k (α, β)-k FSP.
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Table 4.3: Computational results of CPLEX, EH and VNS+TS algorithms for solving 11 real-world instances of Min k (α, β)-k Feature Set Problem

(FSP), where α = α∗. Columns “CPLEX” refer to the outcomes of the solver CPLEX including the objective function value, computation time in

seconds, and optimality gap in %. For the EH algorithm, column “z” is the best objective function value obtained by the algorithm, “Time” denotes

the computation time in seconds, and “Gap” is calculated as z−z∗
z∗ × 100, where z∗ is the best available solution for the Min k (α, β)-k FSP (the optimal

solutions are recognized through a gap of zero for CPLEX; we obtained an optimal solution for instance “0 all” through solving a feasibility problem

where the number of features were set to 1116). Also, column “Non-integer” shows the percent of fractional variables, and “GapLB” shows the gap

between the lower bound, which is obtained by applying Lemma 3.1 and z, and is calculated as z−LB
LB × 100. Columns “VNS+TS” report the outcomes

of the Variable Neighborhood Search+Tabu Search proposed by Paula (2012). Because VNS+TS involves randomized elements, the study reported

ranges for the objective function value and computation time, rather than single values. VNS+TS is able to obtain only two optimal solutions for the

first six instances.

CPLEX EH VNS+TS

Instance α∗ z∗ z Time Gap z Time Gap Non-integer GapLB z Time Gap

ADMF 86 292 292 0.57 0 292 1.29 0.00 3.06% 0.00% 294.8 ± 0.6 0.98 ± 0.19 -

DS 50 65 65 0 0 65 0.03 0.00 0.00% 0.00% 65 0.04 -

PD1 3970 9807 9807 106.59 0 9808 80.36 0.01 0.23% 0.01% 9853.9 ± 3.81 68.92 ± 2.30 -

PD2 760 1265 1265 0.11 0 1265 0.88 0.00 0.00% 0.00% 1265 0.96 ± 0.07 -

PC 229 725 725 118.41 0 726 21.94 0.14 1.10% 0.14% 735 ± 1.56 13.63 ± 3.16 -

SM 22 128 128 593.12 0 128 129.87 0.00 8.00% 0.79% 130.5 ± 0.82 84.57 ± 12.99 -

0 all 354 1116 1117 36000 0.11 1116 155.96 0.00 2.69% 0.00% - - -

1 all 683 2220 2220 375.16 0 2220 284.75 0.00 1.15% 0.00% - - -

2 all 1016 3154 3154 1998 0 3155 651.47 0.03 0.89% 0.03% - - -

3 all 1394 4395 4395 3305.22 0 4395 1368.77 0.00 0.59% 0.00% - - -

4 all 387 1324 1324 208.14 0 1324 150.33 0.00 1.64% 0.07% - - -

Average 3882.30 0.01 258.70 0.02 1.76% 0.09% ≈30.61

60



Chapter 4. Solution Methods for the Min k (α, β)(α, β)(α, β)-k Feature Set Problem

4.8.2 Computational results of standard instances of the Set Cover

Problem

The performance of EH algorithm on 11 real-world instances of Section 4.8.1 is very promising.

However, in terms of computational experiments 11 instances may not be enough for the

evaluation purpose. Because the Min k (α, β)-k FSP is a variant of the Set k-Cover Problem

(SkCP), we further evaluate the EH algorithm on 70 standard instances of the Set Cover

Problem (SCP) available from OR Library (http://people.brunel.ac.uk/~mastjjb/jeb/

orlib/scpinfo.html). We selected these 70 instances because they are standard instances of

the SCP and because the studies of Pessoa et al. (2013) and Wang et al. (2016b) report on the

same instances (we should mention that the study of Pessoa et al. (2013) included the first 45

instances). Table 4.4 shows basic information regarding these 70 instances.

To obtain an instance of the Min k (α, β)-k FSP per instance of the SCP, we must consider

α ≥ 2. In particular, we considered the following three values for α. The same values were

also used in the studies of Pessoa et al. (2013); Wang et al. (2016b)):

• αmin = 2;

• αmax (α∗) = mini∈I1
∑
j∈J aij ; and

• αmed = d(αmin + αmax)/2e.

Note that αmax is exactly calculated as of Equation (3.3). Over all 70 instances, the

first value of α, i.e. αmin = 2, always results in a feasible solution for the Min k (α, β)-k

FSP. In other words, we observed that every element can be covered by at least two features.

The second coverage level, which is αmax (α∗), states the maximum value of α, which is

an instance dependent parameter. Finally, we consider in-between values by setting αmed =

d(αmin + αmax)/2e. Given three values of α per instance, in total we have 210 settings.

Table 4.5 summarizes the outcomes of solver CPLEX and EH algorithm as well as LA-

GRASP and DLL CCSM algorithms of Pessoa et al. (2013); Wang et al. (2016b) as appeared

in those studies. Five criteria of percent of feasible solution, percent of best solution, percent

of optimal solution, average computation time (in second), and average gap (from the best

known solution) were used to evaluate each solution method. Details of those computational

experiments have been reported in Tables 4.9 to 4.11 (one table is reserved for each value of

α). With respect to those outcomes the following observations may be concluded:

• Overall, in terms of solution quality CPLEX has a very promising performance across all

tested values for α, in particular, when the value of α increases (the cases where obtaining

the minimum number of features becomes more difficult). For example, CPLEX obtains

the best solutions for 48.57% and 62.86% of instances for α = αmed, and α = αmax.

• While for smaller values of α, the DDL CCSM outperforms the EH, for larger values of α,

and hence, more challenging instances, the performance of EH algorithm is very promising
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Table 4.4: Basic information for 70 standard instances of Set Cover Problem (SCP), which are

available at OR Library. The table includes the size of each instance class (number of columns

(features) and rows (elements)), along with the density and the number of instances in the

class.

Class No. of columns No. of rows Density (%) Number of instances

scp4 1000 200 2 10

scp5 2000 200 2 10

scp6 1000 200 5 5

scpa 3000 300 2 5

scpb 3000 300 5 5

scpc 4000 400 2 5

scpd 4000 400 5 5

scpe 500 50 20 5

scpnre 5000 500 10 5

scpnrf 5000 500 20 5

scpnrg 10000 1000 2 5

scpnrh 10000 1000 5 5

Table 4.5: Summary of the computational results of CPLEX, EH, LAGRASP (Pessoa et

al., 2013), and DLL CCSM (Wang et al., 2016b) for solving 70 standard instances of the Set

Cover Problem. The study of Pessoa et al. (2013) includes the first 45 instances.

α Criterion CPLEX EH LAGRASP DDL CCSM

αmin Percent of feasible solution 100.00 100.00 100.00 100.00

Percent of best solution 88.57 65.71 71.11 100.00

Percent of optimal solution 85.71 65.71 71.11 85.71

Average computation time 79.96 88.38 15.33 2.41

Average gap 0.11 0.18 0.12 0.00

αmed Percent of feasible solution 100.00 100.00 100.00 100.00

Percent of best solution 48.57 22.86 0.00 51.43

Percent of optimal solution 31.43 2.86 0.00 12.86

Average computation time 355.02 318.92 148.22 323.40

Average gap 0.07 0.11 0.31 0.08

αmax Percent of feasible solution 100.00 100.00 100.00 100.00

Percent of best solution 62.86 30.00 2.22 25.71

Percent of optimal solution 35.71 4.29 2.22 12.86

Average computation time 344.24 314.67 216.56 340.59

Average gap 0.01 0.05 0.16 0.04
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because it obtains best solutions for 30% of instances, as opposed to the DDL CCSM,

which obtains for 25.71% of instances. At the same time, EH is slightly faster than

DDL CCSM.

• When the value of α increases, the LAGRASP algorithm is not able to compete with

the other three. Note that because the study of Pessoa et al. (2013) did not report the

outcomes of their algorithm for the last 25 instances (starting from instance “scpe1”; note

that presented outcomes show that those 25 instances are very challenging) we cannot

compare the true performance of their LAGRASP against CPLEX, EH and DDL CCSM

methods. Nevertheless, the weak performance of the LAGRASP algorithm on the first

45 instances is probably a sign of another weak performance for the last 25 instances.

• The DDL CCSM tends to take loner for larger instances, i.e. from instance “scpnre1”

onward.

• Note that while the DDL CCSM algorithm has a better performance for the first 45

instances, its performance deteriorates for the last 25 instances (see Table 4.10). Indeed,

on average the EH algorithm is faster than the DDL CCSM, particularly, over the last

25 instances. For these instances, the EH algorithm obtains the best solutions for more

than 50% of instances.

• For the case of α = αmax, the EH algorithm competes well against the DDL CCSM

algorithm. Although the performance of both algorithms fluctuates over the first 45

instances, and hence, it is very difficult to compare their performance, for the last 25

instances, the EH algorithm competes well against the DDL CCSM. For example, the

EH obtains 15 best solutions and the DDL CCSM only obtains 5 best solutions, while

the EH has far shorter computation times. In addition to this, for the same instances

the performance of the EH against the solver CPLEX is quite promising because CPLEX

obtains fewer best solutions within almost the same computation time.

We should state that because the study of Pessoa et al. (2013) used different computation

time limits, which are dependent on instance classes (see Table 4.6), and has a maximum of

580 seconds, and also because the maximum computation time of the DDL CCSM algorithm

is around 900 seconds, we used a maximum computation time of 500 seconds for the proposed

EH algorithm, and for every instance class and every value of α. However, on the average,

the computation time of the EH algorithm is much less than this, and is slightly more than

five minutes (318.92 seconds). We believe this provides a fair basis in order to compare the

computation time of the algorithms.

Figures 4.2 to 4.4 visualize gap and computation time of four solutions methods of CPLEX,

EH, LAGRASP, and DDL CCSM, and per each value of α. Those figures show that the per-

formance of EH is improving when α takes larger values. Moreover, Figures 4.3 and 4.4

63



4.8. Computational results

Table 4.6: Maximum computation times (in second), which were used in the LAGRASP algo-

rithm of Pessoa et al. (2013). Their computation time limits depend on the instance classes.

Class αmin αmed αmax

scp4 5 15 27

scp5 10 45 90

scp6 5 20 38

scpa 21 141 265

scpb 17 235 288

scpc 39 329 580

scpd 26 489 544

demonstrate that EH is performing superior than DDL CCSM for the last 25 instances, par-

ticularly, longer computation time of DDL CCSM does not contribute much into the solutions’

quality, and even worse, it reports deteriorated solutions because the values of gap are larger

than those of EH.

To have a better understanding of each method’s individual and pair-wise performance we

perform several statistical analysis tests in the following sections.

Statistical analyses of algorithms’ gap

We perform a set of pair-wise statistical tests (Coffin and Saltzman, 2000) in order to compare

the solution gap and time of four methods of CPLEX, EH, LAGRASP, and DDL CCSM. When

comparing the EH algorithm versus the LAGRASP we only use the outcomes of the first 45

instances of the SCP, out of 70, because the computational experiments of the LAGRASP

algorithm are only available for these instances. For more details we refer the interested reader

to (Pessoa et al., 2013).

We performed paired-sample t-tests to compare the mean of solution gap between EH

and CPLEX, EH and LAGRASP, and EH and DDL CCSM. The outcomes of those tests are

reported in Table 4.7. The paired-sample t-test, which is also known the paired t-test or

dependent t-test, determines whether there is a statistically significant difference in the mean

of a dependent variable between two groups. Here, the dependent variable is the solution gap,

the first group is the EH algorithm, and the second group is one of DDL CCSM, LAGRASP

or the solver CPLEX. Let D be the solution gap mean of pairwise differences, where the

value of gap of LAGRASP, DDL CCSM, or CPLEX is subtracted from that of the EH. Then

D = 0 indicates that on a randomly chosen test problem two algorithms are likely to perform

very closely. Because we have no a priori reason to suppose either algorithm obtains superior

solutions, we test H0 : D = 0 versus H1 : D 6= 0. When H0 is rejected we test H0 versus either

H1 : D < 0 or H1 : D > 0, where H1 : D < 0 tests whether the EH performs better than the

other algorithm (because D < 0 implies that the EH obtains lower gaps), and H1 : D > 0 tests
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Figure 4.2: Performance of gap and computation time of four solution methods of CPLEX, EH,

LAGRASP and DDL CCSM algorithms of Pessoa et al. (2013); Wang et al. (2016b) for solving

70 standard instances of the SCP, where α = αmin = 2. The study of Pessoa et al. (2013)

reported the outcomes for the first 45 instances.
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4.8. Computational results

Figure 4.3: Performance of gap and computation time of four solution methods of CPLEX,

EH, LAGRASP and DDL CCSM algorithms of Pessoa et al. (2013); Wang et al. (2016b) for

solving 70 standard instances of the SCP, where α = αmed. The study of Pessoa et al. (2013)

reported the outcomes for the first 45 instances.
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Figure 4.4: Performance of gap and computation time of four solution methods of CPLEX, EH,

LAGRASP and DDL CCSM algorithms of Pessoa et al. (2013); Wang et al. (2016b) for solving

70 standard instances of the SCP, where α = αmax (α∗). The study of Pessoa et al. (2013)

reported the outcomes for the first 45 instances.
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whether the other method performs better. In all tests, we assumed a 95% confidence level;

see Box et al. (2005); Neter (1996) for more details. The statistical tests and computations

were performed by the software Minitab version 17.2.1 (Minitab, 2015).

Let us first discuss the outcomes where α = αmin. While Table 4.7 shows no statistically

difference in performance between the EH and LAGRASP (p-values of the test shows that

both performs equally good), there are differences between the EH and DDL CCSM, and EH

and CPLEX methods. Additional tests revealed that both DDL CCSM algorithm and solver

CPLEX obtain solutions with smaller solution gap mean. Because we suspected that when α =

αmin, instances may be solved by less computational efforts, we performed several additional

paired-sample t-tests to verify this hypothesis. The outcomes of those tests demonstrated that

none of EH, DDL CCSM, or LAGRASP perform better than the solver CPLEX. Therefore,

the solver CPLEX can obtain very good solutions for these instances. We may conclude that

instances with smaller values of α tend to solve by less computational efforts, and although we

did not investigate the reason behind this, we believe it must be related to the requirement

that every row is needed to be covered by only two columns.

For the case of α = αmed, the test between the EH and LAGRASP not only shows different

performance between two methods, we observed that the EH has lower gap mean than the

LAGRASP method because the test H0 versus H1 : D < 0 has a p-value of 0.000. Also, the

test concluded that there is no statistically significant difference between solution gap mean

of EH and DDL CCSM methods, suggesting that the EH algorithm is just as likely as the

DDL CCSM to obtain good quality solutions, which can be interpreted as “the DDL CCSM

method is losing its previous advantages”. Moreover, while the p-value of the test between

the gap mean of EH and CPLEX is 0.005, we tested H0 versus H1 : D > 0 and obtained a

p-value of 0.003, demonstrating that the solver CPLEX performs better than the EH because

it has a lower gap mean. However, according to the Table 4.10 and Figure 4.3 their difference

in performance is very small.

Finally, where α = αmax (α∗), the test reveals that not only the EH and LAGRASP

algorithms have statistically significant different gap means, the p-value associated with the

test H0 versus H1 : D < 0 (which is 0.000) demonstrates that the EH method has a lower

mean gap than the LAGRASP method. Also, the test shows that both EH and DDL CCSM

methods equally perform good. In contrast to this, the paired-sample t-test between the gap

mean of the EH and CPLEX shows there is a statistically significant difference between the

methods. Moreover, additional tests showed that the solver CPLEX obtains lower value for

gap mean than both EH and DDL CCSM methods.

In line with our findings, the tests acknowledge that, compared to our EH algorithm, the

DDL CCSM algorithm loses its performance when the value of α gets larger.
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Table 4.7: Outcomes of paired-sample t-tests for comparing solution gap mean between EH

and CPLEX, EH and LAGRASP, and EH and DDL CCSM at a 95% confidence level. Because

Pessoa et al. (2013) reported the outcome of the LAGRASP algorithm for the first 45 instances,

we used these 45 instances to perform the test between EH and LAGRASP.

α Method N Mean Standard Deviation Standard Error Mean p-value

αmin EH 70 0.1818 0.4378 0.0523 0.023

CPLEX 70 0.1096 0.3634 0.0434

Difference 70 0.0721 0.2597 0.0310

αmin EH 45 0.0815 0.1588 0.0237 0.282

LAGRAP 45 0.1229 0.2399 0.0358

Difference 45 -0.0413 0.2546 0.0380

αmin EH 70 0.1818 0.4378 0.0523 0.001

DDL CCSM 70 0.0000 0.0000 0.0000

Difference 70 0.1818 0.4378 0.0523

αmed EH 70 0.1211 0.1250 0.0149 0.005

CPLEX 70 0.0856 0.1207 0.0144

Difference 70 0.0355 0.1029 0.0123

αmed EH 45 0.1544 0.0821 0.0122 0.001

LAGRASP 45 0.1061 0.1149 0.0171

Difference 45 0.0483 0.0886 0.0132

αmed EH 70 0.1211 0.1250 0.0149 0.163

DDL CCSM 70 0.0910 0.1156 0.0138

Difference 70 0.0301 0.1786 0.0213

αmax EH 70 0.05866 0.06183 0.00739 0.000

CPLEX 70 0.02362 0.03323 0.00397

Difference 70 0.03504 0.06371 0.00761

αmax EH 45 0.0718 0.0391 0.0058 0.000

LAGRASP 45 0.1766 0.0946 0.0141

Difference 45 -0.1048 0.0788 0.0117

αmax EH 70 0.05866 0.06183 0.00739 0.706

DDL CCSM 70 0.05513 0.04177 0.00499

Difference 70 0.00353 0.07798 0.00932
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Statistical analyses of algorithms’ time

Similar to the statistical tests for pair-wise comparison of solution gap of the methods, we

perform a set of pair-wise statistical tests to compare the solution time of the four methods.

However, by performing the Normality test, we realized that the computation time of the

solution methods is not Normally distributed. Therefore, we chose the Wilcoxon Signed Rank

test, which is a nonparametric and a distribution-free test, in order to compare solution times

of different methods. The Wilcoxon Signed Rank test is a hypothesis test for the population

median where the test statistic is based on counts of positive and negative values. Like before,

in all tests we assumed a 95% confidence level, and we used the statistical software Minitab

version 17.2.1 to execute the tests. Also, because Pessoa et al. (2013) reports the outcomes of

their LAGRASP only for the first 45 instances, we considered this when comparing our EH

algorithm versus the LAGRASP algorithm.

For the Wilcoxon Signed Rank test we calculate the pairwise differences in solution times as

di = yi − xi, where yi is the EH solution time on the i-th instance, and xi is the solution time

of one of DDL CCSM, LAGRASP or CPLEX on the i-th instance. If we observe statistically

significant difference between the solution times of two methods, we perform additional tests

to investigate which method has a shorter solution time.

The details of the Wilcoxon Signed Rank tests were reported in Table 4.8. According to

the table, where α = αmin, there is statistically difference in computation times between the

EH and DDL CCSM, EH and LAGRASP, and EH and CPLEX methods, and that additional

tests showed that the DDL CCSM and CPLEX are faster than our proposed EH, while the

LAGRASP is slower; this is consistent with the previous findings, for example, see Figure 4.2.

However, when the value of α increases, the DDL CCSM method and the solver CPLEX start

spending more time to obtain solutions. For example, where α = αmed, there is no statistically

significant difference between the computation time of EH and DDL CCSM, and EH and

CPLEX (in contrast to where α = αmin). We also observed that when α = αmed not only the

EH and LAGRASP have different performance, the LAGRASP performs faster. We further

investigated the latter and realized that the first 45 instances, out of the 70, are “easier” to solve

than the last 25. This impression may be understood by analyzing Figures 4.2 to 4.4. Finally,

when α = αmax, not only there is a statistically significant difference between the computation

time of EH and DDL CCSM methods, the DDL CCSM method spends more time than the EH

(recall that within these computation times we showed that both methods equally perform well,

see Table 4.7, while the EH has a superior performance for the last 25 instances). Moreover,

the Wilcoxon Signed Rank test used to compare the computation time between EH and the

solver CPLEX resulted in a p-value of 0.051, although very close to the critical value of 0.05, it

states that there is no statistically significant difference between the computation time of two

methods. In spite of observing no statically significant difference between the solution times

of EH and LAGRASP methods, comparing the performance of LAGRASP for smaller values

of α, it seems that the computation time requirement of LAGRASP is following an incline
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Table 4.8: Outcomes of pair-wise Wilcoxon Signed Rank tests for comparing the solution time

differences between EH and DDL CCSM, EH and CPLEX, and EH and LAGRASP at a 95%

confidence level. Because Pessoa et al. (2013) reported the outcome of the LAGRASP for the

first 45 instances, we used these 45 instances to perform the test between EH and LAGRASP.

α Solution methods N Wilcoxon Statistic Estimated Median p-value

αmin EH vs. DDL CCSM 70 2485.0 7.330 0.000

αmin EH vs. CPLEX 70 2398.5 4.365 0.000

αmin EH vs. LAGRASP 45 0.0 -10.38 0.000

αmed EH vs. DDL CCSM 70 1184.0 -3.280 0.734

αmed EH vs. CPLEX 70 1472.0 3.610 0.180

αmed EH vs. LAGRASP 45 775.0 92.91 0.004

αmax EH vs. DDL CCSM 70 905.0 -18.08 0.049

αmax EH vs. CPLEX 70 1576.0 4.015 0.051

αmax EH vs. LAGRASP 45 507.0 -21.70 0.910

trend. Therefore, one may realize that the LAGRASP tends to be slower when the value of α

increases.

Considering shorter solution time of EH algorithm compared to the DDL CCSM (see Ta-

ble 4.8) one may prefer the EH.

The performed statistical tests further validate our earlier conclusions about the perfor-

mance of algorithms. In conclusion,

• for the smaller values of α, the DDL CCSM and solver CPLEX are faster than the EH

algorithm;

• when the value of α gets larger, pair-wise comparisons between the EH and DDL CCSM,

and the EH and CPLEX reveal that the DDL CCSM and CPLEX lose either solution’s

quality or the computation time performance;

• when the value of α increases, the EH algorithm is superior than the DDL CCSM and

LAGRASP heuristics; and,

• for the last 25 instances of the SCP, out of 70, which seems to be very difficult, the EH

algorithm obtains more new best solutions than both CPLEX, and the DDL CCSM, and

that in a shorter time.
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Table 4.9: Computational results of CPLEX, EH, LAGRASP (Pessoa et al., 2013), and DDL CCSM (Wang et al., 2016b) algorithms for solving 70

standard instances of the SkCP, where α = αmin = 2 (Pessoa et al. (2013) reported the outcomes for the first 45 instances; hence, “-” means no

outcome is available). Each method reports the objective function value (“z”; the best values are highlighted), computation time in second, ad gap in

% calculated as z−z∗
z∗ × 100, where z∗ is the best known objective function value. The CPLEX and EH algorithm were allowed to run for 500 seconds,

and the computation time of LAGRASP and DDL CCSM were extracted from their studies.

CPLEX EH LAGRASP DDL CCSM

Instance α z∗ z Time Gap z Time Gap z Time Gap z Time Gap

scp41 2 1148 1148 0.07 0.00 1150 1.03 0.17 1150 5 0.17 1148 0.35 0.00

scp42 2 1205 1205 0.01 0.00 1205 0.49 0.00 1205 5 0.00 1205 0.02 0.00

scp43 2 1213 1213 0.03 0.00 1214 1.09 0.08 1214 5 0.08 1213 0.12 0.00

scp44 2 1185 1185 0.02 0.00 1185 1 0.00 1185 5 0.00 1185 0.03 0.00

scp45 2 1266 1266 0.03 0.00 1266 1.05 0.00 1266 5 0.00 1266 0.38 0.00

scp46 2 1349 1349 0.04 0.00 1352 1.02 0.22 1349 5 0.00 1349 0.12 0.00

scp47 2 1115 1115 0.01 0.00 1115 1.01 0.00 1115 5 0.00 1115 0.02 0.00

scp48 2 1225 1225 0.09 0.00 1225 1.08 0.00 1225 5 0.00 1225 0.04 0.00

scp49 2 1485 1485 0.01 0.00 1485 0.98 0.00 1485 5 0.00 1485 0.06 0.00

scp410 2 1356 1356 0.02 0.00 1359 1.02 0.22 1356 5 0.00 1356 0.8 0.00

scp51 2 579 579 0.03 0.00 579 2.15 0.00 579 10 0.00 579 0.09 0.00

scp52 2 677 677 0.14 0.00 677 2.43 0.00 679 10 0.30 677 0.74 0.00

scp53 2 574 574 0.04 0.00 575 2.23 0.17 574 10 0.00 574 0.11 0.00

scp54 2 582 582 0.11 0.00 586 2.63 0.69 587 10 0.86 582 0.13 0.00

scp55 2 550 550 0.03 0.00 550 2.18 0.00 550 10 0.00 550 0.06 0.00

scp56 2 560 560 0.04 0.00 561 2.37 0.18 560 10 0.00 560 0.03 0.00
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scp57 2 695 695 0.03 0.00 695 2.23 0.00 695 10 0.00 695 0.06 0.00

scp58 2 662 662 0.03 0.00 664 2.51 0.30 662 10 0.00 662 0.14 0.00

scp59 2 687 687 0.05 0.00 687 2.37 0.00 687 10 0.00 687 0.23 0.00

scp510 2 672 672 0.03 0.00 672 2.26 0.00 672 10 0.00 672 0.16 0.00

scp61 2 283 283 0.11 0.00 283 1.09 0.00 283 5 0.00 283 0.01 0.00

scp62 2 302 302 0.06 0.00 302 1.07 0.00 302 5 0.00 302 0.01 0.00

scp63 2 313 313 0.04 0.00 313 1 0.00 313 5 0.00 313 0.02 0.00

scp64 2 292 292 0.07 0.00 294 1 0.68 292 5 0.00 292 0.06 0.00

scp65 2 353 353 0.14 0.00 353 1.19 0.00 353 5 0.00 353 0.02 0.00

scpa1 2 562 562 0.58 0.00 563 4.36 0.18 563 21 0.18 562 0.16 0.00

scpa2 2 560 560 0.33 0.00 560 4.69 0.00 560 21 0.00 560 0.17 0.00

scpa3 2 524 524 0.26 0.00 524 4.25 0.00 524 21 0.00 524 0.16 0.00

scpa4 2 527 527 0.26 0.00 527 4.33 0.00 527 21 0.00 527 0.62 0.00

scpa5 2 557 557 0.16 0.00 558 4.4 0.18 559 21 0.36 557 0.13 0.00

scpb1 2 149 149 1.98 0.00 149 5.06 0.00 149 17 0.00 149 0.11 0.00

scpb2 2 150 150 0.47 0.00 150 4.81 0.00 151 17 0.67 150 0.1 0.00

scpb3 2 165 165 0.35 0.00 165 4.47 0.00 165 17 0.00 165 0.14 0.00

scpb4 2 157 157 0.64 0.00 157 5.09 0.00 157 17 0.00 157 0.09 0.00

scpb5 2 151 151 0.38 0.00 151 4.43 0.00 152 17 0.66 151 0.04 0.00

scpc1 2 514 514 1.06 0.00 515 7.55 0.19 515 39 0.19 514 0.31 0.00

scpc2 2 483 483 0.96 0.00 483 7.21 0.00 486 39 0.62 483 0.79 0.00

scpc3 2 544 544 12.84 0.00 545 14.91 0.18 544 39 0.00 544 3.99 0.00

scpc4 2 484 484 0.57 0.00 484 7.28 0.00 485 39 0.21 484 0.24 0.00

scpc5 2 488 488 1.32 0.00 489 6.61 0.20 490 39 0.41 488 0.29 0.00
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scpd1 2 122 122 0.94 0.00 122 7.34 0.00 122 26 0.00 122 0.19 0.00

scpd2 2 127 127 0.69 0.00 127 7.58 0.00 127 26 0.00 127 0.06 0.00

scpd3 2 138 138 0.61 0.00 138 6.22 0.00 138 26 0.00 138 0.11 0.00

scpd4 2 122 122 1 0.00 122 7.24 0.00 123 26 0.82 122 0.1 0.00

scpd5 2 130 130 0.88 0.00 130 7.23 0.00 130 26 0.00 130 0.09 0.00

scpe1 2 9 9 0.84 0.00 9 1.32 0.00 - - - 9 0.01 0.00

scpe2 2 8 8 0.06 0.00 8 0.5 0.00 - - - 8 0.01 0.00

scpe3 2 8 8 0.15 0.00 8 0.6 0.00 - - - 8 0.01 0.00

scpe4 2 8 8 0.03 0.00 8 3.76 0.00 - - - 8 0.01 0.00

scpe5 2 8 8 0.06 0.00 8 8.24 0.00 - - - 8 0.01 0.00

scpnre1 2 49 49 13.97 0.00 49 52.22 0.00 - - - 49 1.14 0.00

scpnre2 2 51 51 68.52 0.00 51 147.61 0.00 - - - 51 1.56 0.00

scpnre3 2 47 47 28.38 0.00 47 26.09 0.00 - - - 47 0.14 0.00

scpnre4 2 49 49 67.22 0.00 49 42.04 0.00 - - - 49 0.22 0.00

scpnre5 2 49 49 16.51 0.00 49 19.87 0.00 - - - 49 0.18 0.00

scpnrf1 2 22 22 22.17 0.00 22 28.04 0.00 - - - 22 0.43 0.00

scpnrf2 2 24 24 11.38 0.00 24 22.5 0.00 - - - 24 0.25 0.00

scpnrf3 2 23 23 8.3 0.00 23 18.93 0.00 - - - 23 0.22 0.00

scpnrf4 2 22 22 54.03 0.00 22 72.51 0.00 - - - 22 0.28 0.00

scpnrf5 2 21 21 277.01 0.00 21 289.86 0.00 - - - 21 0.43 0.00

scpnrg1 2 352 356 500.05 1.14 353 531.49 0.28 - - - 352 28.12 0.00

scpnrg2 2 311 312 500.05 0.32 312 531.49 0.32 - - - 311 37.81 0.00

scpnrg3 2 325 326 500.05 0.31 326 531.97 0.31 - - - 325 10.3 0.00

scpnrg4 2 329 331 500.05 0.61 330 523.85 0.30 - - - 329 9.66 0.00
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scpnrg5 2 327 329 500.05 0.61 328 523.7 0.31 - - - 327 20.98 0.00

scpnrh1 2 109 111 500.09 1.83 111 529.83 1.83 - - - 109 28.38 0.00

scpnrh2 2 111 113 500.09 1.80 114 526.43 2.70 - - - 111 9.09 0.00

scpnrh3 2 105 105 500.09 0.00 106 530.88 0.95 - - - 105 4.11 0.00

scpnrh4 2 101 101 500.09 0.00 102 534.32 0.99 - - - 101 2.47 0.00

scpnrh5 2 95 96 500.09 1.05 96 524.73 1.05 - - - 95 0.97 0.00

Average 79.96 0.11 88.38 0.18 15.33 0.12 2.41 0.00
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Table 4.10: Computational results of CPLEX, EH, LAGRASP (Pessoa et al., 2013), and DDL CCSM (Wang et al., 2016b) algorithms for solving 70

standard instances of the SkCP, where α = αmed (Pessoa et al. (2013) reported the outcomes for the first 45 instances; hence, “-” means no outcome is

available). Each method reports the objective function value (“z”; the best values are highlighted), computation time in second, and gap in % calculated

as z−z∗
z∗ × 100, where z∗ is the best known objective function value. The CPLEX and EH algorithm were allowed to run for 500 seconds, and the

computation time of LAGRASP and DDL CCSM were extracted from their studies.

CPLEX EH LAGRASP DDL CCSM

Instance α z∗ z Time Gap z Time Gap z Time Gap z Time Gap

scp41 7 8350 8350 4.8 0.00 8360 1.69 0.12 8366 15 0.19 8352 12.61 0.02

scp42 6 6111 6111 0.62 0.00 6118 1.3 0.11 6117 15 0.10 6111 4.13 0.00

scp43 5 4676 4676 0.15 0.00 4681 1.23 0.11 4690 15 0.30 4676 2.28 0.00

scp44 5 4670 4670 0.39 0.00 4674 1.32 0.09 4679 15 0.19 4670 6.86 0.00

scp45 7 8389 8389 0.25 0.00 8398 1.37 0.11 8409 15 0.24 8392 14.15 0.04

scp46 6 6416 6416 1.47 0.00 6419 1.65 0.05 6432 15 0.25 6416 2.8 0.00

scp47 6 6281 6281 0.07 0.00 6282 1.16 0.02 6284 15 0.05 6281 1.54 0.00

scp48 7 8421 8421 1.09 0.00 8427 1.37 0.07 8439 15 0.21 8427 4.58 0.07

scp49 6 7101 7101 0.68 0.00 7106 1.42 0.07 7121 15 0.28 7101 2.27 0.00

scp410 5 5355 5355 0.17 0.00 5358 1.21 0.06 5364 15 0.17 5355 8.51 0.00

scp51 13 11205 11205 51.54 0.00 11213 6.61 0.07 11239 45 0.30 11209 9.77 0.04

scp52 14 14418 14418 55.64 0.00 14436 15 0.12 14473 45 0.38 14428 11.24 0.07

scp53 13 11476 11476 24.39 0.00 11488 4.87 0.10 11513 45 0.32 11487 18.2 0.10

scp54 12 9944 9944 45.74 0.00 9956 11.65 0.12 9965 45 0.21 9950 37.09 0.06

scp55 12 10880 10880 20.11 0.00 10898 12.19 0.17 10918 45 0.35 10895 33.41 0.14

scp56 12 10581 10581 123.4 0.00 10597 11.55 0.15 10629 45 0.45 10591 30.96 0.09
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scp57 14 14919 14926 500.01 0.05 14937 26.86 0.12 14984 45 0.44 14946 6.05 0.18

scp58 12 10622 10622 196.16 0.00 10637 19.54 0.14 10687 45 0.61 10623 11.75 0.01

scp59 12 11042 11042 83.43 0.00 11053 7.09 0.10 11081 45 0.35 11049 12.07 0.06

scp510 13 12436 12436 193.33 0.00 12451 21.67 0.12 12475 45 0.31 12450 19.59 0.11

scp61 17 7653 7675 500 0.29 7681 501.16 0.37 7692 20 0.51 7653 13.24 0.00

scp62 16 6739 6757 500 0.27 6752 219.51 0.19 6773 20 0.50 6739 11.32 0.00

scp63 18 8309 8317 500 0.10 8317 86.55 0.10 8365 20 0.67 8309 9.74 0.00

scp64 18 8546 8558 500 0.14 8562 173.7 0.19 8585 20 0.46 8546 15.25 0.00

scp65 18 9038 9039 500.01 0.01 9060 67.79 0.24 9070 20 0.35 9038 4.01 0.00

scpa1 21 21227 21249 500.01 0.10 21277 504.53 0.24 21324 141 0.46 21241 99.36 0.07

scpa2 21 21739 21792 500.01 0.24 21782 503.94 0.20 21820 141 0.37 21750 90.84 0.05

scpa3 21 20095 20135 500.01 0.20 20130 504.36 0.17 20155 141 0.30 20126 107.08 0.15

scpa4 22 22865 22915 500.01 0.22 22936 503.89 0.31 22985 141 0.52 22880 59 0.07

scpa5 20 18643 18676 500.01 0.18 18680 503.94 0.20 18706 141 0.34 18660 93.74 0.09

scpb1 61 29184 29212 500.01 0.10 29231 503.96 0.16 29234 235 0.17 29184 79.85 0.00

scpb2 60 28112 28172 500.01 0.21 28149 504.6 0.13 28187 235 0.27 28124 187.65 0.04

scpb3 59 27852 27903 500.01 0.18 27889 504.08 0.13 27944 235 0.33 27852 171.15 0.00

scpb4 58 25678 25744 500.01 0.26 25745 504.32 0.26 25742 235 0.25 25695 164.97 0.07

scpb5 60 28203 28219 500.01 0.06 28274 504.26 0.25 28297 235 0.33 28262 199.5 0.21

scpc1 30 32648 32689 500.01 0.13 32734 506.39 0.26 32763 329 0.35 32648 286.86 0.00

scpc2 31 32745 32851 500.01 0.32 32853 506.43 0.33 32871 329 0.38 32745 172.7 0.00

scpc3 31 34451 34541 500.01 0.26 34555 506.46 0.30 34610 329 0.46 34451 144 0.00

scpc4 30 31366 31482 500.01 0.37 31432 506.1 0.21 31495 329 0.41 31372 265.82 0.02

scpc5 29 30060 30145 500.01 0.28 30102 506.38 0.14 30196 329 0.45 30061 161.68 0.00
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scpd1 82 38991 39092 500.02 0.26 39077 506.56 0.22 39132 489 0.36 38991 484.71 0.00

scpd2 83 39030 39106 500.02 0.19 39074 506.38 0.11 39098 489 0.17 39038 482.25 0.02

scpd3 81 39198 39239 500.02 0.10 39212 507.09 0.04 39271 489 0.19 39221 218.23 0.06

scpd4 82 38781 38819 500.02 0.10 38806 506.56 0.06 38879 489 0.25 38814 311.55 0.09

scpd5 83 40321 40384 500.02 0.16 40367 506.9 0.11 40409 489 0.22 40362 403.47 0.10

scpe1 40 162 163 500 0.62 163 39.12 0.62 - - - 162 178.44 0.00

scpe2 40 158 158 500 0.00 158 2.69 0.00 - - - 158 19.58 0.00

scpe3 42 166 166 46.16 0.00 166 6.23 0.00 - - - 166 46.87 0.00

scpe4 44 177 177 0.18 0.00 177 32.19 0.00 - - - 177 65.42 0.00

scpe5 43 172 172 0.02 0.00 173 500.46 0.58 - - - 173 4.13 0.58

scpnre1 224 59249 59288 500.04 0.07 59249 509.8 0.00 - - - 59369 821.12 0.20

scpnre2 225 57866 57914 500.04 0.08 57866 509.64 0.00 - - - 58017 852.59 0.26

scpnre3 224 57041 57073 500.04 0.06 57041 509.06 0.00 - - - 57167 835.23 0.22

scpnre4 223 56086 56110 500.05 0.04 56086 510.4 0.00 - - - 56204 826.51 0.21

scpnre5 224 56189 56215 500.04 0.05 56189 510.73 0.00 - - - 56291 858.28 0.18

scpnrf1 460 57034 57034 500.08 0.00 57042 510.76 0.01 - - - 57155 905.25 0.21

scpnrf2 458 58174 58174 500.08 0.00 58191 511.06 0.03 - - - 58287 919.42 0.19

scpnrf3 461 58575 58575 500.08 0.00 58575 509.94 0.00 - - - 58671 914.18 0.16

scpnrf4 463 59780 59795 500.08 0.03 59780 510.68 0.00 - - - 59913 854.98 0.22

scpnrf5 462 61548 61554 500.08 0.01 61548 510.56 0.00 - - - 61678 895.49 0.21

scpnrg1 78 89903 89903 500.06 0.00 89949 532.75 0.05 - - - 89933 887.01 0.03

scpnrg2 78 88380 88483 500.05 0.12 88433 532.76 0.06 - - - 88380 915.04 0.00

scpnrg3 78 89303 89417 500.05 0.13 89373 535.11 0.08 - - - 89303 884.36 0.00

scpnrg4 79 94045 94068 500.05 0.02 94079 531.32 0.04 - - - 94045 906.75 0.00
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scpnrg5 79 92262 92262 500.05 0.00 92304 532.98 0.05 - - - 92342 880.56 0.09

scpnrh1 220 110892 110892 500.09 0.00 110898 531.15 0.01 - - - 111303 915.91 0.37

scpnrh2 220 112584 112584 500.09 0.00 112584 533.39 0.00 - - - 112921 953.42 0.30

scpnrh3 220 110262 110266 500.09 0.00 110262 536.13 0.00 - - - 110547 933.63 0.26

scpnrh4 220 109963 109963 500.09 0.00 109977 534.97 0.01 - - - 110348 929.54 0.35

scpnrh5 219 109275 109275 500.09 0.00 109275 534.09 0.00 - - - 109589 946.25 0.29

Average 355.02 0.09 318.92 0.12 148.22 0.33 323.40 0.09
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Table 4.11: Computational results of CPLEX, EH, LAGRASP (Pessoa et al., 2013), and DDL CCSM (Wang et al., 2016b) algorithms for solving 70

standard instances of the SkCP, where α = αmax (α∗) (Pessoa et al. (2013) reported the outcomes for the first 45 instances; hence, “-” means no

outcome is available). Each method reports the objective function value (“z”; the best values are highlighted), computation time in second, and gap in

% calculated as z−z∗
z∗ × 100, where z∗ is the best known objective function value. The CPLEX and EH algorithm were allowed to run for 500 seconds,

and the computation time of LAGRASP and DDL CCSM were extracted from their studies.

CPLEX EH LAGRASP DDL CCSM

Instance α z∗ z Time Gap z Time Gap z Time Gap z Time Gap

scp41 11 18265 18265 0.09 0.00 18273 1.16 0.04 18290 27 0.14 18265 9.76 0.00

scp42 9 12360 12360 4.1 0.00 12370 1.68 0.08 12405 27 0.36 12367 11.54 0.06

scp43 8 10396 10396 0.06 0.00 10396 1.12 0.00 10398 27 0.02 10403 5.25 0.07

scp44 8 10393 10393 7.18 0.00 10401 3.38 0.08 10427 27 0.33 10396 5.21 0.03

scp45 11 18856 18856 0.06 0.00 18863 1.22 0.04 18856 27 0.00 18856 1.02 0.00

scp46 10 15394 15394 3.81 0.00 15411 1.76 0.11 15419 27 0.16 15404 5.87 0.06

scp47 10 15233 15233 1.09 0.00 15249 1.33 0.11 15280 27 0.31 15236 9.37 0.02

scp48 11 18602 18603 0.59 0.01 18610 1.24 0.04 18628 27 0.14 18613 9.9 0.06

scp49 10 16558 16558 0.77 0.00 16563 1.36 0.03 16591 27 0.20 16568 2.05 0.06

scp410 8 11607 11607 0.37 0.00 11616 1.34 0.08 11618 27 0.09 11607 13.99 0.00

scp51 24 35663 35679 500.01 0.04 35699 57.08 0.10 35749 90 0.24 35716 52.27 0.15

scp52 26 45396 45397 12.65 0.00 45416 3.57 0.04 45433 90 0.08 45428 68.76 0.07

scp53 24 36329 36330 385.63 0.00 36349 17.56 0.06 36388 90 0.16 36368 53.16 0.11

scp54 21 28017 28017 30.25 0.00 28037 9 0.07 28051 90 0.12 28035 69.43 0.06

scp55 22 32779 32779 91.12 0.00 32795 5.08 0.05 32878 90 0.30 32802 33.24 0.07

scp56 21 29608 29608 398.6 0.00 29632 17.6 0.08 29653 90 0.15 29632 87.43 0.08
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scp57 25 41930 41931 112.55 0.00 41955 10.06 0.06 41954 90 0.06 41956 73.8 0.06

scp58 22 32320 32320 117.43 0.00 32344 20.24 0.07 32405 90 0.26 32344 30.81 0.07

scp59 22 33584 33587 174.65 0.01 33602 12.58 0.05 33655 90 0.21 33608 82.14 0.07

scp510 24 38709 38709 172.75 0.00 38738 13.05 0.07 38807 90 0.25 38756 15.36 0.12

scp61 31 23510 23526 500 0.07 23540 501.31 0.13 23534 38 0.10 23510 34.62 0.00

scp62 29 19934 19961 500 0.14 19964 326.61 0.15 20025 38 0.46 19940 15.44 0.03

scp63 34 27983 27983 79.63 0.00 28014 10 0.11 28027 38 0.16 27983 34.78 0.00

scp64 33 26442 26470 500 0.11 26471 353.42 0.11 26530 38 0.33 26446 13.89 0.02

scp65 33 27069 27078 500 0.03 27084 20.48 0.06 27124 38 0.20 27069 18.39 0.00

scpa1 40 68522 68537 500.01 0.02 68595 504.98 0.11 68669 265 0.21 68590 258.14 0.10

scpa2 39 65842 65885 500.01 0.07 65902 505.24 0.09 65922 265 0.12 65927 226.02 0.13

scpa3 40 66829 66876 500.01 0.07 66936 504.78 0.16 67016 265 0.28 66891 227.35 0.09

scpa4 41 72334 72346 500.01 0.02 72419 504.72 0.12 72465 265 0.18 72398 177.24 0.09

scpa5 38 60491 60502 500.01 0.02 60551 504.55 0.10 60625 265 0.22 60539 250.3 0.08

scpb1 119 105506 105540 500.01 0.03 105548 505.35 0.04 105636 288 0.12 105560 159.32 0.05

scpb2 118 102921 102921 500.01 0.00 103003 504.55 0.08 103046 288 0.12 102941 285.94 0.02

scpb3 115 98280 98355 500.01 0.08 98364 505.38 0.09 98445 288 0.17 98347 155.19 0.07

scpb4 114 93773 93802 500.01 0.03 93773 505.16 0.00 93836 288 0.07 93800 259.11 0.03

scpb5 118 102810 102862 500.01 0.05 102860 505.03 0.05 102905 288 0.09 102867 256.99 0.06

scpc1 58 112471 112588 500.01 0.10 112610 508.03 0.12 112667 580 0.17 112565 327.52 0.08

scpc2 59 113916 113970 500.01 0.05 114004 508.4 0.08 114145 580 0.20 114012 210.31 0.08

scpc3 59 117416 117521 500.01 0.09 117505 507.08 0.08 117680 580 0.22 117501 398.16 0.07

scpc4 58 110823 110927 500.01 0.09 110944 507.25 0.11 111091 580 0.24 110938 540.09 0.10

scpc5 56 104439 104503 500.01 0.06 104544 507.27 0.10 104591 580 0.15 104518 511.67 0.08
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scpd1 162 144884 144957 500.02 0.05 144884 507.28 0.00 145060 544 0.12 144961 536.63 0.05

scpd2 163 144096 144178 500.02 0.06 144108 507.46 0.01 144218 544 0.08 144138 517.41 0.03

scpd3 159 140474 140570 500.02 0.07 140534 508.3 0.04 140685 544 0.15 140589 503.39 0.08

scpd4 162 143488 143527 500.02 0.03 143504 507.72 0.01 143582 544 0.07 143488 366.89 0.00

scpd5 163 146307 146391 500.02 0.06 146354 508.17 0.03 146452 544 0.10 146342 325.45 0.02

scpe1 77 366 366 1.02 0.00 367 0.56 0.27 - - - 366 2.34 0.00

scpe2 78 364 364 0.01 0.00 364 1.28 0.00 - - - 364 7.69 0.00

scpe3 82 393 393 0.57 0.00 394 0.5 0.25 - - - 393 4.66 0.00

scpe4 85 421 421 0.03 0.00 421 0.51 0.00 - - - 421 0.09 0.00

scpe5 83 398 398 0.16 0.00 399 0.51 0.25 - - - 398 0.81 0.00

scpnre1 445 224062 224062 500.04 0.00 224068 511.27 0.00 - - - 224080 766.27 0.01

scpnre2 447 224973 225003 500.05 0.01 224973 511.76 0.00 - - - 224987 611.23 0.01

scpnre3 445 220353 220364 500.04 0.00 220353 510.6 0.00 - - - 220421 804.61 0.03

scpnre4 444 218233 218233 500.04 0.00 218237 511.53 0.00 - - - 218271 835.09 0.02

scpnre5 445 218361 218361 500.04 0.00 218392 511.93 0.01 - - - 218395 775.7 0.02

scpnrf1 918 226774 226774 500.08 0.00 226774 511.47 0.00 - - - 226862 759.96 0.04

scpnrf2 914 227573 227578 500.08 0.00 227573 511.74 0.00 - - - 227669 792.27 0.04

scpnrf3 919 231214 231240 500.08 0.01 231214 512.32 0.00 - - - 231316 793.58 0.04

scpnrf4 924 235921 235924 500.08 0.00 235921 512.07 0.00 - - - 235953 758.83 0.01

scpnrf5 922 237911 237913 500.08 0.00 237911 514.25 0.00 - - - 237969 801.87 0.02

scpnrg1 153 324968 325189 500.05 0.07 324968 535.36 0.00 - - - 325344 927.32 0.12

scpnrg2 154 328003 328003 500.05 0.00 328152 536.78 0.05 - - - 328304 912.46 0.09

scpnrg3 154 329440 329514 500.05 0.02 329440 539.51 0.00 - - - 329773 901.09 0.10

scpnrg4 155 338373 338373 500.05 0.00 338429 541.87 0.02 - - - 338838 928.29 0.14
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scpnrg5 155 334710 334901 500.05 0.06 334710 536.47 0.00 - - - 335270 841.44 0.17

scpnrh1 438 429560 429631 500.09 0.02 429560 546.1 0.00 - - - 429888 866.54 0.08

scpnrh2 437 428063 428072 500.1 0.00 428063 535.11 0.00 - - - 428409 894.69 0.08

scpnrh3 437 424290 424290 500.09 0.00 424316 532.75 0.01 - - - 424599 870.84 0.07

scpnrh4 437 423090 423090 500.09 0.00 423129 539.6 0.01 - - - 423458 877.23 0.09

scpnrh5 436 422102 422127 500.09 0.01 422102 541.11 0.00 - - - 422501 856.12 0.09

Average 344.24 0.02 314.67 0.06 216.56 0.18 340.59 0.06
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4.8. Computational results

Table 4.12: Summary of the performance of four solution methods of VNS+TS, LS, EH, and

CPLEX for solving Min k (α, β)-k Feature Set Problem over 125 randomly generated instances.

Number of optimal solutions was derived by comparing the solutions obtained by the algorithms

with those proven optimal obtained by CPLEX.

Criterion VNS+TS LS EH CPLEX

Percent of feasible solution 100% 100% 100% 100%

Percent of best solution 20.80% 0.00% 71.20% 65.60%

Percent of optimal solution 0.00% 0.00% 20.00% 20.00%

Average computation time 10.57 70.52 243.52 243.24

Average gap 1.06 13.31 0.80 0.80

4.8.3 Computational results of random instances

Following successful application of the EH algorithm on 11 real-world, and 210 standard in-

stances of the Set k-Cover Problem (SkCP), we are determined to apply the EH algorithm

on 125 randomly generated instances by Paula (2012). This allows us to further evaluate

the performance of the EH algorithm on large instances, and also to compare the EH algo-

rithm with the Variable Neighborhood Search+Tabu Search (VNS+TS) algorithm proposed

by Paula (2012).

This set include 125 randomly generated instances each with 2000 features and two disjoint

sets (I1 and I2) of 20000 sample pairs (total sample pairs is 40000) and an edge density of 20%

(recall that the density of the standard instances of the SkCP is 5% and 10%). Therefore, they

can represent case-control datasets with 2000 features and 200 samples. Due to incorporating

several parameters to generate the instances, they pose different solution challenges: while

some of them can be optimally solved by an exact solver in a few seconds, for majority of

them obtaining high quality solutions in a reasonable amount of time is a challenge. Indeed,

as we will see in Chapter 5, for these instances exact solvers are unable to obtain even feasible

solutions for Max β (α, β)-k Feature Set Problem and Max Cover (α, β)-k Feature Set Problem

in a reasonable amount of time.

Table 4.12 summarizes the computational experiments of EH and CPLEX as well as

VNS+TS and LS (Local Solver) algorithms as reported in Paula et al. (2016) and Paula (2012)

for solving 125 randomly generated instances, where α = αmax. Here, we only considered

α = αmax because the previous studies have only considered the same value of α, and there-

fore, a direct comparison is possible. We set the maximum computation time of both CPLEX

and EH to 300 seconds (five minutes).

According to Table 4.12, the EH algorithm outperforms all three methods in terms of

solution quality. In particular,

• the EH algorithm obtains best known solutions for more than 71% of instances, while

CPLEX obtains for 65.60% of instances, and the VNS+TS algorithm obtains for less
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than 21% of instances. Interestingly, the LS is quite unable to report any best known

solution;

• the EH algorithm has obtained optimal solutions for 20% of instances, while the VNS+TS,

and LS failed to report any (this was derived by comparing the solutions obtained by the

algorithms with those of proven optimal obtained by CPLEX);

• the worst average gap (from the best known solution) is due to the LS, and the best

is due to the EH (and also CPLEX), which are less than 1%. The average gap of the

VNS+TS algorithm is greater than 1%;

• while the computation time of EH and CPLEX is almost identical, the EH outperforms

CPLEX because it obtains 7 more best known solutions than CPLEX within the same

computation time; and,

• although the VNS+TS requires far less computation time than the EH, this does not

impact the superiority of the EH. This is because the VNS+TS algorithm stops when no

improvement is attainable by the algorithm. Note that we limited the computation time

of the EH algorithm to 300 seconds (five minutes), which is quite short with respect to

the size of instances.

It is also interesting to see how the solutions obtained by EH, VNS+TS, and LS are matched

with those obtained by CPLEX, i.e. they have exactly the same objective function values.

Evidenced by Table 4.13, solutions obtained by the EH are exactly matched with those obtained

by CPLEX for more than 70% of instances. This is however, 0% and less than 1% for the LS

and VNS+TS.

Table 4.13: Percent of solutions obtained by EH, VNS+TS, and LS that are exactly matched

(have the same objective function value) with CPLEX.

Criterion VNS+TS LS EH

Matched with CPLEX 0.80% 0.00% 70.40%

Figure 4.5 illustrates the values of gap (over the best known solution) of CPLEX, EH, LS,

and VNS+TS algorithms for solving those 125 randomly generated instances. From the figure

it is not difficult to see that the EH algorithm has the best performance in this regard; the

worst performance is due to the LS. Table 4.14 details these outcomes. Here, we reported the

objective function value (“z”; the best values are highlighted), computation time in second,

and gap (from the best) in % calculated as z−z∗
z∗ × 100, where z∗ is the best known objective

function value. The CPLEX and EH algorithm were allowed to run for 300 seconds, and

the computation time of VNS+TS and LS were extracted from Paula (2012) and Paula et

al. (2016).
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4.8. Computational results

Figure 4.5: Gap of four solution methods of VNS+TS, LS, EH, and CPLEX for solving 125

randomly generated instances of Min k (α, β)-k Feature Set Problem where α = αmax.
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We should add that in contrary to Section 4.8.2 we did not perform the statistical analysis

tests for the algorithm’s performance because the capability of EH algorithm in comparison

to the three methods of VNS+TS, LS, and CPLEX has been well demonstrated through

Tables 4.12 and 4.13 as well the detailed computational results depicted in Figure 4.5 and

reported in Table 4.14.
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Table 4.14: Computational results of VNS+TS algorithm and LS (Local Solver) method as reported in Paula et al. (2016) and Paula (2012), and EH

and CPLEX for solving 125 randomly generated instances of Min k (α, β)-k Feature Set Problem, where α = αmax. Each method reports the objective

function value (“z”; the best values are highlighted), computation time in second, and gap in % calculated as z−z∗
z∗ × 100, where z∗ is the best known

objective function value. The CPLEX and EH algorithm were allowed to run for 300 seconds, and the computation time of LS and VNS+TS were

extracted from Paula et al. (2016) and Paula (2012). In the outcomes of the CPLEX, “Nodes” refers to the number of nodes left to be explored in the

Branch-and-Bound tree, and “Gap0” is reported by the CPLEX.

VNS+TS LS EH CPLEX

Instance z∗ z Time Gap z Time Gap z Time Gap z Time Nodes Gap0 Gap

1 535 545 9.76 1.87 561 67.22 4.86 535 3.41 0.00 535 4.60 0 0.00 0.00

2 535 543 7.11 1.50 559 70.67 4.49 535 3.68 0.00 535 3.36 0 0.00 0.00

3 535 544 7.92 1.68 561 67.26 4.86 535 3.26 0.00 535 3.12 0 0.00 0.00

4 529 539 6.97 1.89 555 68.96 4.91 529 3.45 0.00 529 3.13 0 0.00 0.00

5 535 540 9.82 0.93 558 70.05 4.30 535 3.20 0.00 535 3.20 0 0.00 0.00

6 384 384 13.82 0.00 467 70.84 21.61 388 303.17 1.04 391 303.40 1 21.10 1.82

7 379 379 10.52 0.00 476 66.85 25.59 389 303.10 2.64 391 304.83 1 21.10 3.17

8 234 236 4.92 0.85 292 66.66 24.79 234 303.38 0.00 234 303.02 65 35.07 0.00

9 382 384 10.09 0.52 469 72.96 22.77 382 303.13 0.00 391 303.03 1 21.10 2.36

10 375 375 11.66 0.00 483 68.28 28.80 382 303.15 1.87 391 303.06 1 21.10 4.27

11 604 613 10.98 1.49 726 68.74 20.20 604 303.17 0.00 610 303.07 161 8.42 0.99

12 305 305 11.05 0.00 378 71.84 23.93 311 303.21 1.97 307 303.07 28 23.43 0.66

13 610 618 8.97 1.31 730 71.01 19.67 610 303.14 0.00 610 303.37 151 8.42 0.00

14 610 614 9.61 0.66 732 70.91 20.00 610 303.16 0.00 610 303.08 151 8.42 0.00

15 610 613 13.51 0.49 732 71.02 20.00 610 303.12 0.00 610 303.10 150 8.42 0.00
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16 882 890 8.14 0.91 1018 72.23 15.42 882 303.19 0.00 882 303.07 207 4.06 0.00

17 882 891 6.97 1.02 1018 71.53 15.42 882 303.28 0.00 882 303.04 214 4.06 0.00

18 882 890 9.57 0.91 1018 71.81 15.42 882 303.16 0.00 882 303.10 201 4.06 0.00

19 885 891 7.46 0.68 1013 72.07 14.46 885 303.44 0.00 885 303.06 228 4.39 0.00

20 885 888 10.75 0.34 1014 71.65 14.58 885 303.23 0.00 885 303.06 240 4.39 0.00

21 870 879 7.72 1.03 997 72.29 14.60 870 303.13 0.00 870 303.10 324 4.10 0.00

22 1055 1066 7.89 1.04 1207 72.26 14.41 1055 303.20 0.00 1057 303.10 392 2.92 0.19

23 870 878 7.97 0.92 999 72.37 14.83 870 303.17 0.00 870 303.08 324 4.10 0.00

24 870 879 6.38 1.03 1025 71.57 17.82 870 303.19 0.00 871 303.41 301 4.21 0.11

25 870 878 8.68 0.92 1021 72.28 17.36 870 303.15 0.00 871 303.09 308 4.21 0.11

26 568 577 6.29 1.58 590 70.97 3.87 568 3.30 0.00 568 3.13 0 0.00 0.00

27 568 577 7.84 1.58 590 71.12 3.87 568 3.50 0.00 568 3.16 0 0.00 0.00

28 536 545 9.44 1.68 562 70.43 4.85 536 3.32 0.00 536 3.17 0 0.00 0.00

29 568 577 7.03 1.58 590 70.59 3.87 568 3.27 0.00 568 3.12 0 0.00 0.00

30 568 577 8.72 1.58 601 71.23 5.81 568 3.33 0.00 568 3.16 0 0.00 0.00

31 404 404 11.59 0.00 495 68.10 22.52 421 303.18 4.21 425 303.32 87 23.32 5.20

32 409 409 14.32 0.00 495 68.13 21.03 427 304.35 4.40 425 303.16 87 23.32 3.91

33 255 260 9.06 1.96 322 70.33 26.27 255 303.51 0.00 255 303.06 41 35.93 0.00

34 415 415 8.72 0.00 495 70.31 19.28 421 303.44 1.45 425 303.12 88 23.32 2.41

35 400 400 20.25 0.00 495 71.94 23.75 422 303.49 5.50 425 303.13 88 23.32 6.25

36 724 740 20.76 2.21 874 71.61 20.72 724 303.24 0.00 726 303.10 228 6.10 0.28

37 724 731 12.03 0.97 859 72.02 18.65 724 303.30 0.00 726 303.08 235 6.10 0.28

38 726 739 11.02 1.79 885 71.45 21.90 726 303.79 0.00 726 303.06 234 6.10 0.00

39 724 740 15.68 2.21 870 71.37 20.17 724 303.20 0.00 726 303.12 235 6.10 0.28
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40 724 740 9.49 2.21 870 72.38 20.17 724 303.15 0.00 726 303.09 234 6.10 0.28

41 952 962 9.14 1.05 1105 71.92 16.07 952 303.44 0.00 956 303.08 386 3.97 0.42

42 952 964 8.64 1.26 1127 69.30 18.38 952 303.20 0.00 956 303.35 391 3.97 0.42

43 952 961 10.90 0.95 1102 71.70 15.76 952 303.38 0.00 956 303.08 389 3.97 0.42

44 952 965 9.07 1.37 1105 72.20 16.07 952 303.21 0.00 956 303.10 388 3.97 0.42

45 956 959 8.81 0.31 1102 72.14 15.27 956 303.55 0.00 956 303.10 392 3.97 0.00

46 990 1002 5.58 1.21 1144 71.81 15.56 990 303.10 0.00 991 303.08 311 4.08 0.10

47 1053 1063 11.25 0.95 1207 71.63 14.62 1053 303.11 0.00 1056 303.05 306 3.44 0.28

48 990 1000 4.99 1.01 1145 71.89 15.66 990 303.10 0.00 991 303.15 308 4.08 0.10

49 990 1000 6.87 1.01 1144 71.74 15.56 990 303.10 0.00 991 303.36 307 4.08 0.10

50 990 1002 5.83 1.21 1145 71.90 15.66 990 303.09 0.00 991 303.15 307 4.08 0.10

51 581 598 11.28 2.93 618 67.78 6.37 581 3.31 0.00 581 3.19 0 0.00 0.00

52 581 595 12.20 2.41 618 68.34 6.37 581 3.54 0.00 581 3.22 0 0.00 0.00

53 581 598 10.23 2.93 618 68.10 6.37 581 3.33 0.00 581 3.18 0 0.00 0.00

54 581 598 12.29 2.93 618 67.83 6.37 581 3.33 0.00 581 3.22 0 0.00 0.00

55 581 597 13.31 2.75 618 66.65 6.37 581 3.36 0.00 581 3.20 0 0.00 0.00

56 288 295 7.46 2.43 358 66.72 24.31 288 303.13 0.00 288 303.17 43 36.90 0.00

57 288 294 12.55 2.08 358 67.77 24.31 288 303.16 0.00 288 303.10 43 36.90 0.00

58 286 286 12.83 0.00 358 70.33 25.17 288 303.47 0.70 288 303.16 42 36.90 0.70

59 288 292 10.91 1.39 358 70.48 24.31 288 305.17 0.00 288 303.13 42 36.90 0.00

60 288 289 15.91 0.35 358 70.08 24.31 288 303.52 0.00 288 303.34 43 36.90 0.00

61 932 949 13.87 1.82 1071 71.06 14.91 932 303.35 0.00 932 303.12 201 5.72 0.00

62 834 849 22.62 1.80 987 68.40 18.35 834 303.37 0.00 834 303.11 138 7.36 0.00

63 932 955 10.03 2.47 1076 70.56 15.45 933 303.70 0.11 932 303.09 201 5.72 0.00
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64 932 950 14.77 1.93 1076 67.29 15.45 933 303.42 0.11 932 303.11 201 5.72 0.00

65 932 948 12.26 1.72 1077 67.31 15.56 933 303.33 0.11 932 304.03 199 5.72 0.00

66 1251 1265 12.17 1.12 1380 66.49 10.31 1251 303.28 0.00 1251 303.11 334 3.80 0.00

67 1251 1266 8.84 1.20 1379 66.58 10.23 1251 303.40 0.00 1251 303.33 334 3.80 0.00

68 1251 1266 10.17 1.20 1380 71.68 10.31 1251 303.44 0.00 1251 303.14 333 3.80 0.00

69 1251 1270 8.74 1.52 1376 72.29 9.99 1251 303.43 0.00 1251 303.13 336 3.80 0.00

70 1251 1264 7.79 1.04 1376 72.12 9.99 1251 303.39 0.00 1251 303.12 334 3.80 0.00

71 1148 1168 9.14 1.74 1284 71.99 11.85 1161 303.68 1.13 1148 303.33 129 5.19 0.00

72 1148 1159 7.94 0.96 1285 71.81 11.93 1161 303.50 1.13 1148 303.58 129 5.19 0.00

73 1148 1162 9.10 1.22 1280 72.43 11.50 1161 303.47 1.13 1148 303.09 129 5.19 0.00

74 1148 1157 7.65 0.78 1281 71.99 11.59 1161 303.52 1.13 1148 303.25 129 5.19 0.00

75 1148 1163 6.16 1.31 1280 72.15 11.50 1161 303.48 1.13 1148 303.09 129 5.19 0.00

76 611 629 8.61 2.95 651 68.64 6.55 611 3.54 0.00 611 3.44 0 0.00 0.00

77 611 624 16.26 2.13 650 69.41 6.38 611 3.71 0.00 611 3.41 0 0.00 0.00

78 611 628 15.69 2.78 651 67.18 6.55 611 3.95 0.00 611 3.68 0 0.00 0.00

79 611 627 11.40 2.62 650 69.52 6.38 611 3.88 0.00 611 3.51 0 0.00 0.00

80 611 626 19.65 2.45 650 69.79 6.38 611 3.51 0.00 611 3.41 0 0.00 0.00

81 679 683 12.90 0.59 796 70.61 17.23 700 303.36 3.09 679 303.12 90 14.18 0.00

82 679 684 16.77 0.74 790 68.25 16.35 700 303.41 3.09 679 303.13 85 14.18 0.00

83 507 507 12.30 0.00 600 72.73 18.34 532 303.91 4.93 532 303.41 60 26.96 4.93

84 679 685 9.25 0.88 793 67.28 16.79 700 303.52 3.09 679 303.12 91 14.18 0.00

85 679 683 16.61 0.59 789 70.49 16.20 679 307.27 0.00 679 303.36 91 14.18 0.00

86 831 831 13.24 0.00 930 68.68 11.91 837 303.38 0.72 837 303.16 81 13.71 0.72

87 832 832 14.44 0.00 930 70.89 11.78 837 303.29 0.60 837 303.18 81 13.71 0.60
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88 834 834 15.35 0.00 933 70.87 11.87 837 304.76 0.36 837 303.16 81 13.71 0.36

89 833 833 15.17 0.00 934 66.49 12.12 837 303.98 0.48 837 303.18 81 13.71 0.48

90 837 838 13.84 0.12 930 72.30 11.11 837 303.29 0.00 837 303.17 81 13.71 0.00

91 1051 1059 11.67 0.76 1152 71.75 9.61 1051 304.85 0.00 1051 303.07 17 10.52 0.00

92 1051 1059 12.83 0.76 1156 72.21 9.99 1051 304.23 0.00 1051 303.19 17 10.52 0.00

93 1051 1061 7.54 0.95 1155 71.77 9.90 1051 303.77 0.00 1051 303.14 17 10.52 0.00

94 1051 1059 12.13 0.76 1149 72.27 9.32 1051 303.82 0.00 1051 303.09 17 10.52 0.00

95 1051 1061 7.13 0.95 1157 72.30 10.09 1051 303.72 0.00 1051 303.16 17 10.52 0.00

96 1260 1271 5.52 0.87 1349 71.87 7.06 1260 303.59 0.00 1260 303.10 17 8.40 0.00

97 1260 1264 6.33 0.32 1349 71.72 7.06 1260 303.34 0.00 1260 303.14 17 8.40 0.00

98 1260 1266 5.49 0.48 1348 72.26 6.98 1260 304.60 0.00 1260 303.11 17 8.40 0.00

99 1260 1267 5.88 0.56 1349 72.16 7.06 1260 303.90 0.00 1260 303.08 17 8.40 0.00

100 1260 1266 9.89 0.48 1349 71.57 7.06 1260 303.81 0.00 1260 303.13 17 8.40 0.00

101 635 646 12.04 1.73 678 68.13 6.77 635 3.66 0.00 635 3.21 0 0.00 0.00

102 635 650 10.18 2.36 676 68.07 6.46 635 3.29 0.00 635 3.23 0 0.00 0.00

103 633 650 13.08 2.69 673 67.35 6.32 633 4.67 0.00 633 3.65 0 0.00 0.00

104 635 646 11.23 1.73 676 70.50 6.46 635 4.23 0.00 635 3.22 0 0.00 0.00

105 633 647 16.35 2.21 698 71.17 10.27 633 3.83 0.00 633 3.47 0 0.00 0.00

106 524 524 10.31 0.00 599 70.80 14.31 541 303.40 3.24 541 303.26 50 28.23 3.24

107 525 525 9.46 0.00 597 70.77 13.71 541 303.61 3.05 541 303.21 50 28.23 3.05

108 525 525 23.34 0.00 599 70.81 14.10 541 303.39 3.05 541 303.14 50 28.23 3.05

109 523 523 8.90 0.00 600 67.55 14.72 541 303.37 3.44 541 303.14 50 28.23 3.44

110 519 519 12.41 0.00 600 70.16 15.61 541 303.47 4.24 541 303.23 50 28.23 4.24

111 549 549 8.76 0.00 622 72.32 13.30 551 304.09 0.36 551 303.80 14 25.17 0.36
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112 546 546 9.99 0.00 622 71.25 13.92 551 304.04 0.92 551 304.02 14 25.17 0.92

113 551 551 9.35 0.00 625 70.83 13.43 551 303.73 0.00 551 303.46 14 25.17 0.00

114 551 554 7.18 0.54 620 68.15 12.52 551 303.32 0.00 551 303.80 14 25.17 0.00

115 847 848 15.43 0.12 1002 68.70 18.30 847 303.05 0.00 847 303.05 20 14.43 0.00

116 1160 1160 18.58 0.00 1247 72.70 7.50 1273 303.55 9.74 1273 303.22 22 18.84 9.74

117 1138 1147 9.17 0.79 1243 73.58 9.23 1138 303.33 0.00 1138 303.08 12 10.20 0.00

118 1158 1158 10.98 0.00 1245 73.27 7.51 1273 303.94 9.93 1273 303.32 22 18.84 9.93

119 1158 1158 8.97 0.00 1244 72.56 7.43 1273 304.03 9.93 1273 303.17 22 18.84 9.93

120 1165 1165 6.71 0.00 1251 71.37 7.38 1273 303.68 9.27 1273 303.36 22 18.84 9.27

121 1148 1156 6.89 0.70 1241 73.14 8.10 1148 303.34 0.00 1148 303.58 0 10.94 0.00

122 1148 1162 4.83 1.22 1240 72.95 8.01 1148 303.34 0.00 1148 303.40 0 10.94 0.00

123 1148 1157 6.10 0.78 1242 72.04 8.19 1148 303.35 0.00 1148 303.35 0 10.94 0.00

124 1148 1156 7.12 0.70 1240 71.97 8.01 1148 303.33 0.00 1148 303.37 0 10.94 0.00

125 1148 1154 6.41 0.52 1240 71.90 8.01 1148 303.36 0.00 1148 303.37 0 10.94 0.00
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4.9 Conclusion

This chapter proposed an efficient exact+heuristic (EH) algorithm for both weighted and un-

weighted Min k (α, β)-k Feature Set Problem (FSP). The algorithm includes a greedy construc-

tion heuristic (mCRCC), an exact component, and one removal local search algorithm (RLS).

It is worth emphasizing that not only the EH algorithm is distinct from those used in the

previous studies, it utilizes problem-driven local searches, which were developed by exploring

mathematical properties of the Min k (α, β)-k FSP, and delivers high quality solutions.

Over a set of 346 tested instances including real-word, weighted and randomly generated

instances, the proposed EH algorithm has a very competitive performance. For example, it

obtains several new best solutions for the weighted instances of the Set k-Cover Problem. This

is further supported by the statistical tests that proved that for larger values of α, and larger

and more challenging instances, CPLEX and state-of-the-art algorithms lose either solution’s

quality or computation time superiority, whereas the EH algorithm obtains larger number of

best solutions (about 4% more), and that within the same or less computation time. Also,

the fact that the EH algorithm obtains best solutions for more than 50% of large and more

challenging instances proves its superiority compared to the state-of-the-art algorithms.

For unweighted and randomly generated instances, the EH algorithm has an excellent so-

lution quality: it has an average gap of less than 1%, and obtains best known solutions for

more than 71% of instances, about 6% more than CPLEX, and 50% more than the state-of-

the-art algorithms. Moreover, the EH obtains optimal solutions for 20% of instances, while

the state-of-the-art algorithms fail to report any optimal solution.

With respect to these outcomes one may conclude that the proposed EH algorithm competes

well against the state-of-the-art algorithms, and is capable of delivering high quality solutions

for the Min k (α, β)-k FSP, and that in a reasonable amount of time.
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Chapter 5

Solution Methods for the Max βββ

and Max Cover (α, β)(α, β)(α, β)-k Feature

Set Problems

The major outcome of this chapter entitled “An optimization approach towards selecting fea-

tures in biological datasets” was peer reviewed and accepted for oral presentation at the ASOR

2016 conference in Canberra, Australia, between 16 – 18 November 2016.

The second manuscript entitled “A heuristic algorithm for the (α, β)-k Feature Set Problem”

is under preparation to be submitted for an international journal very soon.

Abstract

This chapter develops algorithms and solution methods to solve the Max β and Max Cover

(α, β)-k Feature Set Problems (FSPs). We explore both exact and heuristic solution methods

for the Max β (α, β)-k FSP. On the exact approaches, an integer programming formulation is

solved by utilizing available solvers. Because of the computational complexity of the Max β

(α, β)-k FSP and incapability of exact solvers in obtaining even feasible solutions, in particular,

for large instances, we propose two pre-processing methods. These methods greatly facilitate

exact solvers to obtain feasible, and even optimal solutions for medium sized instances of

the Max β (α, β)-k FSP. However, even by utilizing those pre-processing methods solving

large instances is still a challenge. Therefore, we propose an exact+heuristic algorithm, which

combines both heuristic and exact algorithms in order to solve the Max β (α, β)-k FSP. To

the best of our knowledge, the algorithm obtains the best results for the Max β (α, β)-k

FSP, and far better than the exact solvers; in particular, it has a very promising performance

for large instances. On solving the Max Cover (α, β)-k FSP, we obtain feasible lower bound

solutions, and show that those lower bound solutions are within close proximity to upper
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bounds. According to the computational experiments of solving 136 instances, which are

reported in this chapter, the proposed solution procedures outperform the exact solvers.

5.1 Introduction

Given a set of features and two classes of data, the Max β (α, β)-k Feature Set Problem (FSP)

selects a set of minimum cost features, out of a larger set, to explain the dichotomy between

the classes, and at least α features do so for each pair of entities of different classes. Indeed,

the Max β (α, β)-k FSP maximizes the internal consistency of the entities in the same class.

This problem has a broad range of applications including in computational biology. We refer

the interested reader to Chapter 3 for a detailed discussion on the Max β (α, β)-k FSP.

Earlier we discussed that the Max β (α, β)-k FSP can be modeled as a variant of the

well-known Maximum Satisfiability Problem (MAX-SAT). Because the MAX-SAT is NP-

Hard (Karp, 1972; Battiti and Protasi, 1999), the Max β (α, β)-k FSP is NP-Hard as well.

In addition to this, the large size of the datasets associated with the Max β (α, β)-k FSP

applications adds more difficulty to the problem solving. Therefore, designing and developing

efficient algorithms and solution methods for solving the Max β (α, β)-k FSP is of particular

importance.

This chapter designs and develops an exact+heuristic (EH) algorithm to solve the Max β

(α, β)-k FSP. We first attempt to solve the integer programming formulation of the problem

(Model IPMBP in Section 3.5.2) by exact solvers, in particular, the solver CPLEX. As ex-

pected, exact solvers are not very efficient in solving the Max β (α, β)-k FSP. Nevertheless, the

obtained outcomes provide a figure on the difficulty of the Max β (α, β)-k FSP. We improve

the incapability of exact solvers by proposing two pre-processing methods, which obtain high

quality feasible (initial) solutions for the Max β (α, β)-k FSP, as well as starting solutions for

the exact solvers. Those pre-processing methods are direct product of applying the properties

discussed in Chapter 3. Also, we will utilize the pre-processing methods in the EH algorithm.

The proposed EH algorithm utilizes both exact and heuristic methods to develop high

quality solutions for the Max β (α, β)-k FSP. The EH obtains a set of features that have a

high probability of being in an optimal solution of the Max β (α, β)-k FSP, and ensures those

features will be included in a feasible solution. Then, the algorithm builds a feasible solution by

solving a sub-problem of the original Max β (α, β)-k FSP, which has less features and elements.

To the best of our knowledge, and as evidenced by the computational results, this is a very

efficient algorithm and is able to deliver high quality solutions over all 136 solved instances of

the Max β (α, β)-k FSP, and that in a reasonable amount of time.

This chapter is organized as follows. We provide a short review of the available and relevant

studies to this research in Section 5.2. Section 5.3 discusses exact solution methods for the Max

β (α, β)-k FSP. Section 5.4 discusses the EH algorithm. As evidenced by the computational

results, the EH algorithm outperforms available methods. In Section 5.6 we discuss solution
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methods for solving the Max Cover (α, β)-k Feature Set Problem (FSP). Finally, the chapter

ends with several conclusions.

5.2 Literature review

Cotta et al. (2004) discussed the fundamental ideas of the Max β (α, β)-k Feature Set Problem

(FSP). Earlier applications of the Max β (α, β)-k FSP were studied in the work of Berretta et

al. (2007), and Berretta et al. (2008). They developed an integer programming formulation for

the problem, and utilized the commercial solver CPLEX to solve it. Due to the computational

difficulty of solving the Max β (α, β)-k FSP, as well as lack of efficient methods in their

studies, they could only solve small and medium sized instances. Therefore, they did not

investigate their model on large instances of the Max β (α, β)-k FSP. Several applications of

the problem in computational biology and Bioinformatics were investigated by Ravetti and

Moscato (2008); Ravetti et al. (2009); Paula et al. (2011). Their major contributions include

identifying biomarkers for certain diseases, rather than on the computational side. Later,

Paula (2012) developed the first heuristic algorithm for the Max β (α, β)-k FSP. To the best

of our knowledge, the study of Paula (2012) is the only available work on developing heuristic

solution algorithms for the Max β (α, β)-k FSP.

Because the Max β (α, β)-k FSP can be modeled as a variant of the Maximum Satisfiability

Problem (MAX-SAT or MaxSAT) with certain additional constraints, we shall briefly review

the most relevant studies on the MAX-SAT, and focus on recent advances, in particular, those

related to the algorithm development. Partial MAX-SAT is a generalization of the MAX-SAT

with both hard and soft clauses. Several local searches were developed in Cai et al. (2016)

for this variant of the MAX-SAT. The main idea of these local searches is separation between

hard and soft clauses. Bouhmala (2015) proposed a multilevel learning algorithm for the MAX-

SAT. The multilevel paradigm creates a hierarchy of increasingly smaller sub-problems (of the

original problem) until the size of the smallest sub-problem falls below a specified threshold.

The algorithm generates a solution for the smallest sub-problem, and then projects it back

onto each of the intermediate sub-problems. Martins et al. (2015) improved the performance

of linear search algorithms for the MAX-SAT. The linear search algorithms start by adding a

new relaxation variable to each soft clause and solving the resulting model with a solver. A

new constraint on the relaxation variables is added such that models with a less value are kept.

Instead of adding a new constraint over variables, the authors added a constraint on a subset

of relaxation variables. This approach avoids large number of relaxation variables.

Ansótegui et al. (2016) have extended some of the best performing algorithms for the MAX-

SAT by introducing certain improvements. Their main ideas include solving sub-problems

of the original MAX-SAT by developing heuristics. Goffinet and Ramanujan (2016) applied

Monte-Carlo Tree Search in combination with local search algorithms. Their hybrid algorithm

overcame the drawback of the available algorithms, mainly by moving to different areas in
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the search space. Poloczek and Williamson (2016) reported a thorough analysis on the per-

formance of approximation algorithms for the MAX-SAT. Their major findings are twofold:

greedy algorithms often obtain very good solutions at low computational cost, and performance

of the deterministic algorithms is better than the randomized greedy algorithms. Following

these observations, they proposed a new algorithm that combines greedy and stochastic local

searches, and obtained very high quality solutions. Many algorithms for solving the MAX-SAT

has a core of a stochastic local search algorithm; Cai et al. (2015) discusses several of these

algorithms. Also, Lu and Vasko (2015) applied a stochastic local search algorithm for the

weighted MAX-SAT.

Golovnev and Kutzkov (2014) proposed new exact algorithms for a variant of the MAX-

SAT, where the input instance is not very sparse, and improved the best known bound.

Poloczek et al. (2014), and Escoffier et al. (2012) discussed several approximation algorithms

for the MAX-SAT. One approach to solve the MAX-SAT is via solving a sequence of satisfi-

ability/feasibility problems (that is, finding feasible solutions). As expected, these algorithms

heavily rely on a solver because they use the solver to obtain feasible solutions. With regard

to this, the approaches investigated by Ignatiev et al. (2014) reduce the number of times a

satisfiability problem is solved. Also, many variants of the MAX-SAT have been investigated.

See for example Petkovska et al. (2016), and Zhang et al. (2016).

According to these approaches for solving the MAX-SAT, one may group them based on

their similarities of the applied solution methods, some of which are decomposition-based

methods (Cai et al., 2016; Bouhmala, 2015; Martins et al., 2015), heuristic and approximation

algorithms (Ansótegui et al., 2016; Poloczek and Williamson, 2016; Poloczek et al., 2014;

Escoffier et al., 2012), and solving a sequence of feasibility problems (Ignatiev et al., 2014).

Some of these frameworks were used in this research to develop and implement algorithms and

solution methods for the Max β (α, β)-k FSP.

5.3 Pre-processing methods

The focus of this section is to utilize available exact solvers, for example CPLEX, to solve the

Max β (α, β)-k Feature Set Problem (FSP). This is because exact solvers have tremendously

been advanced in the last decade, and such advancements should well be utilized.

We first attempt to solve the Max β (α, β)-k FSP through solving an integer program (IP)

by an exact solver. In Section 3.5.2 we discussed such an IP model, and named it Model

IPMBP . Our initial attempt to solve Model IPMBP over large instances failed; exact solvers,

including the CPLEX are unable to obtain optimal solutions, and even feasible solutions, for

large instances of the Max β (α, β)-k FSP. Therefore, we overcome this limitation by developing

two pre-processing methods in order to facilitate exact solvers. These methods obtain very good

quality feasible solutions for the Max β (α, β)-k FSP, and allow exact solvers to converge much

faster.
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The proposed pre-processing methods are based on Proposition 3.3, in which we showed

that any solution to the Max β (α, β)-k FSP must also be feasible for the Min k (α, β)-k

Feature Set Problem (FSP). Moreover, Proposition 3.3 proves that the Max β (α, β)-k FSP is

to select the best solution among all optimal solutions of the Min k (α, β)-k FSP, according

to the criterion of maximizing β (recall that multiple optimal solutions for the Min k (α, β)-k

FSP have the same objective function value, however, as they include different sets of features,

they may have different values of β). Lemma 3.2 shows that this solution is also a lower bound

solution for the Max β (α, β)-k FSP. Thus, an optimal solution for the Min k (α, β)-k FSP is

a feasible lower bound for the Max β (α, β)-k FSP.

Those two processing methods are different in the number of optimal solutions (pool) for

the Min k (α, β)-k FSP they utilize. While in the first method |P | = 1, and a single feasible

lower bound solution for the Max β (α, β)-k FSP is generated, in the second method |P | ≥ 2,

and multiple feasible lower bound solutions are generated. We call the former Initial Method 1

(IM 1), and the latter Initial Method 2 (IM 2). Note that because IM 2 obtains more than one

optimal solution for the Min k (α, β)-k FSP, it is more capable of delivering a higher quality

feasible lower bound solution for the Max β (α, β)-k FSP than the IM 1.

Algorithm 5.1 summarizes a procedure, in which IM 1 and IM 2 are applied in order to

deliver feasible lower bound solutions for the Max β (α, β)-k FSP. Such a feasible lower bound

solution may be supplied into exact solvers for optimization.

Algorithm 5.1: The procedure of generating feasible lower bound solution for the Max

β (α, β)-k Feature Set Problem (FSP). The procedure works by obtaining a pool of high

quality (ideally optimal) solutions for the Min k (α, β)-k Feature Set Problem (FSP). The

solution with the maximum value of β is chosen as the feasible lower bound solution.

Input: Model IPMCFSP , and parameter |P | (cardinality of the pool).

Output: A feasible lower bound solution J∗ (a set of features) for the Max β (α, β)-k FSP.

while stopping condition is not met do

Construct a pool P = {P1, . . . , Pp} of high quality (ideally optimal) solutions for the Min k

(α, β)-k FSP;

end

Let J∗ ∈ P denote the solution (a set of features) that has the maximum value of β;

Report J∗;

Algorithm 5.1 will be implemented in the EH algorithm in order to generate feasible initial

solutions for the Max β (α, β)-k FSP. Several points are worth discussing regarding Algo-

rithm 5.1:

• In order to obtain multiple optimal solutions for the Min k (α, β)-k FSP, Proposition 3.2

can be applied. That is, by iteratively solving the Min k (α, β)-k FSP and ensuring

that the so obtained optimal solutions will not be explored one may obtain new optimal

solutions for the Min k (α, β)-k FSP, if they exist. Termination with an infeasible status
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(in a reasonable amount of time) is the proof that all optimal solutions for the Min k

(α, β)-k FSP have been explored. This is important because it implies that we are able

to obtain the optimal solution for the Max β (α, β)-k FSP (see Proposition 3.5).

• In general, we may not be able to obtain all optimal solutions of the Min k (α, β)-k FSP

because obtaining all optimal solutions of an integer program is an NP-Hard problem

in its own right. For this reason, we may obtain only p optimal solutions (i.e. |P | = p).

Another stopping criterion may be the total computation time allocated to obtaining

multiple optimal solutions.

• Following the computational difficulty of the Min k (α, β)-k FSP, particularly for large

instances, we may not be able obtain even a single optimal solution. In such a case, we

can generate a pool of best obtained solutions for the Min k (α, β)-k FSP to construct a

feasible lower bound solution for the Max β (α, β)-k FSP. This solution does not lead to

the optimal solution for the Max β (α, β)-k FSP because this is not constructed out of

an optimal solution of the Min k (α, β)-k FSP.

• In practice, providing a feasible solution for an integer program is very beneficial since it

provides a starting point for an exact solver. This is very useful because when the size

of an instance of the Max β (α, β)-k FSP is large, even obtaining a feasible solution is

very resource demanding, and may take hours; not to mention that the exact solvers may

even fail to obtain such a feasible solution. According to the computational results of

Sections 5.5.1 and 5.5.2, CPLEX is not able to deliver feasible solutions for large instances

of the Max β (α, β)-k FSP.

• For integer programs, exact solvers spend considerable amount of resources on the root

relaxation of the Branch-and-Bound algorithm. A feasible solution greatly facilitates the

root relaxation process, and decreases the demand for resources.

5.4 An exact+heuristic algorithm

Proposition 3.3 proves that the Max β (α, β)-k Feature Set Problem (FSP) is the problem

of selecting the best solution, among all optimal solutions of the Min k (α, β)-k Feature Set

Problem (FSP), according to the objective function of maximizing β. Therefore, the optimal

solution for the Max β (α, β)-k FSP must lie in the pool of all optimal solutions of the Min

k (α, β)-k FSP. We already utilized this property to generate feasible solutions for the Max β

(α, β)-k FSP (see Section 5.3). This section utilizes this proposition to design and implement

a very efficient heuristic algorithm for the Max β (α, β)-k FSP, which is capable of solving

large instances and obtaining very high quality solutions. This algorithm, which we name it

the exact+heuristic (EH) algorithm, combines both exact and heuristics to solve the Max β

(α, β)-k FSP. The EH algorithm has two major steps. Step 1 generates a feasible (initial)

solution, and Step 2 improves this solution. While the first step is heuristically performed, the
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second step is exactly solved. Thus, the algorithm has the potential to obtain proven optimal

solutions for the Max β (α, β)-k FSP. Algorithm 5.2 summarizes the EH algorithm. Both

Initial Method 1 (IM 1) and Initial Method 2 (IM 2) have been implemented in Algorithm 5.2.

Algorithm 5.2: The exact+heuristic (EH) algorithm to solve the Max β (α, β)-k Feature

Set Problem (FSP). The algorithm starts by constructing a feasible solution, and proceeds

with improving this solution until the stopping condition is met.

Input: Models IPMCFSP and IPMBP ; a set J of features; sets I1 and I2 of elements;

parameters α and p.

Output: An improved solution (a set J∗ ⊆ J of features) for the Max β (α, β)-k FSP.

Step 1. Constructing a feasible solution.

Apply either Initial Method 1 (IM 1) or Initial Method 2 (IM 2) to construct a feasible

solution. Alternatively, apply Algorithm 5.3 for the same purpose.

Step 2. Improving the feasible solution.

while the stopping condition is not met do

Apply an exact solver to solve the original Max β (α, β)-k FSP, given the set J∗ of features

as a starting solution;

Update J∗;

end

Report J∗;

5.4.1 Initial solutions

Initial solutions for the EH algorithm are constructed through two major procedures. The

first procedure is Algorithm 5.1. In the second procedure a pool of p ∈ Z+ optimal solutions

for the Min k (α, β)-k FSP is obtained. Then, the algorithm utilizes these optimal solutions

to construct a partially built solution for the Max β (α, β)-k FSP. This is illustrated in Algo-

rithm 5.3.

From the pool of p optimal solutions for the Min k (α, β)-k FSP, those features that are

common across all optimal solutions are extracted, because these features may have a high

probability to be in an optimal solution of the Max β (α, β)-k FSP, or at least it can be argued

that they are part of a very good quality feasible solution. By obtaining common features

across all solutions in the pool, we will have a set of features that can appear in a feasible

solution of the Max β (α, β)-k FSP. Let J̃ ⊂ J denotes this set of features. Set J̃ leads to a

partially built solution for the Max β (α, β)-k FSP, which may not be feasible. Therefore, we

need to repair it in order to ensure that at least one feasible solution is available for the Max

β (α, β)-k FSP.

The feasibility of the partially built solution may be restored by solving a sub-problem

of the original Max β (α, β)-k FSP, which has a reduced number of features and elements

because a set of features has already been chosen to be in a solution. Indeed, the sub-problem

is generated by including the set of available features, i.e. J \ J̃ , and uncovered elements. The

union of the set of features obtained through solving this sub-problem and J̃ forms a feasible
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Algorithm 5.3: The procedure of generating a partially built solution for the Max β

(α, β)-k Feature Set Problem (FSP). The procedure starts by obtaining a pool of p optimal

solutions for the Min k (α, β)-k Feature Set Problem (FSP). From this pool, a partially

built solution is constructed by including the set J̃ ⊂ J of features that are common

across all solutions of the pool. If this solution is not feasible for the Max β (α, β)-k

FSP, then a sub-problem of the original problem (over the sets of available features and

uncovered elements) is solved.

Input: Models IPMCFSP and IPMBP ; a set J of features; sets I1 and I2 of elements;

parameters α and p.

Output: An improved solution (a set J∗ ⊆ J of features) for the Max β (α, β)-k FSP.

while the stopping condition is not met do

Obtain a pool P = {P1, . . . , Pp} of optimal solutions for the Min k (α, β)-k FSP, where

|P | = p;

Let J̃ ⊂ J be the set of all features that appear in every solution of pool;

Construct a partially built solution for the Max β (α, β)-k FSP: J∗ = J̃ ;

end

if J∗ is not feasible then

Build a sub-problem of the original Max β (α, β)-k FSP by including the set of available

features, and uncovered elements;

Solve the sub-problem; let J̃ be the set of features in the optimal solution of the

sub-problem;

J∗ = J∗ ∪ J̃ ;

end

Report J∗;
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(initial) set of features for the Max β (α, β)-k FSP. Remember from our earlier discussion in

Section 5.3 that having a feasible solution is very important when attempting to exactly solve

integer and mixed-integer programs, particularly, when the instances are large.

Note that if the size of the sub-problem in Algorithm 5.3 is still very large, and therefore

cannot be solved in a short time, recursive applications of the EH algorithm can be performed.

5.4.2 Improved solutions

After generating a feasible solution for the Max β (α, β)-k FSP we improve the solution. The

improvement procedure of the EH algorithm exactly solves the original Max β (α, β)-k FSP

by providing the so obtained feasible solution as the starting point to an exact solver.

Note that because improvement phase solves the original Max β (α, β)-k FSP it may yield

proven optimal solution. Indeed, according to the computational experiments of Sections 5.5.1

and 5.5.2, the EH algorithm delivers very high quality solutions, including optimal, for the real-

world and randomly generated instances of the Max β (α, β)-k FSP. Finally, note that by only

using an exact solver, for example CPLEX, to solve the Max β (α, β)-k FSP we may not obtain

such high quality solutions (this incapability of CPLEX is further discussed in Sections 5.5.1

and 5.5.2). On the other hand, the EH algorithm extensively contributes into solving the Max

β (α, β)-k FSP, and improving incapability of CPLEX.

5.5 Computational results

This section reports the computational experiments of applying the exact+heuristic (EH) al-

gorithm, which is presented in Algorithm 5.2, on two sets of instances. All algorithms were

implemented in the programming language Python 2.7 via the standard solver CPLEX 12.5.0

Python API. The computing resource has Linux Ubuntu 14.04 LTS operating system with 32

GB of memory and 12 cores of Intel R©Xeon CPU E5-1650 at 3.5 GHz. Unless otherwise stated,

for all computational experiments we utilize only one thread (processor).

The first set includes 11 real-world unweighted instances ranging from small to large. Sec-

tion 5.5.1 discusses the computational results of those instances. The second set includes 125

randomly generated unweighted and large instances for the (α, β)-k Feature Set Problem (FSP).

Those instances have the same size, however, due to the their generation framework they pose

computational challenge for the available solution methods of the Max β (α, β)-k Feature Set

Problem (FSP). The computational results of those instances are discussed in Section 5.5.2.

5.5.1 Computational results of real-world instances

This section reports the computational results of the EH algorithm on 11 real-world instances

ranging from small to large. Two sets of real-world instances were considered to evaluate the

performance of the EH algorithm. The first set, which includes six biological instances ranging

from small to large, was previously studied by Paula (2012), and the second set, which includes
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Table 5.1: 11 real-world instances of the Max β (α, β)-k Feature Set Problem (FSP), including

the size of instances, number of features, and number of entities/samples (of both classes).

Columns “|J |”, “I1”, “I2”, and “α∗” show parameters of the associated Max β (α, β)-k FSP,

including number of features, number of elements (pairs of entities) belonging to different

classes and to the same class, and the optimal value of parameter α.

Instance No. of

features

No. of en-

tities

|J | |I1| |I2| α∗ Reference

ADMF 686 83 686 1720 1683 86 Paula et al. (2011)

DS 73 15 73 56 49 50 Lockstone et al. (2007)

PD1 17099 105 17097 2750 2710 3970 Scherzer et al. (2007)

PD2 1674 25 1674 144 156 760 Lesnick et al. (2007)

PC 3556 171 3,556 7290 7245 229 Chandran et al. (2007)

SM 525 1,219 525 273834 468537 22 Charlesworth et al. (2010)

0 all 1969 450 1969 32400 68625 354 Haque et al. (2016)

1 all 3304 450 3304 32400 68625 683 Haque et al. (2016)

2 all 4243 450 4243 32400 68625 1016 Haque et al. (2016)

3 all 5436 450 5436 32400 68625 1394 Haque et al. (2016)

4 all 2005 450 2005 32400 68625 387 Haque et al. (2016)

five large instances of face recognition, may truly represent actual dimension of the datasets

we may encounter in applications of the Max β (α, β)-k FSP, particularly in computational

biology. Obtaining optimal solution for the instances of the second set, or even high quality

solutions has been a challenge for the exact solvers. Therefore, these instances provide a good

test bed to evaluate the performance of the EH algorithm for solving the Max β (α, β)-k FSP.

All instances are unweighted (unicost).

The basic information regarding those 11 real-world instances is shown in Table 5.1. The

first three columns show the instance name, number of features (which may represent protein,

genes, probes, SNPs, etc.), and total number of entities (of both Class 1 and Class 2). In each

dataset, we have two classes (groups) of data: Class 1 (e.g. Healthy or Control) and Class

2 (e.g. Disease or Case, see Chapter 2 for more details). The second four columns provide

parameters of the Max β (α, β)-k FSP associated with each instance. Here, column “|J |” gives

the total number of features, column “|I1|” is total number of pairs of entities of different

classes, and column “|I2|” is total number of pairs of entities of the same class. Recall from

our earlier discussion in Section 2.2 that an element i ∈ I1 may be obtained by considering

every combination of size two of entities of Class 1 and Class 2, and an element i ∈ I2 may

be obtained by considering every combination of size two of entities of the same class. Sets

I1 and I2 can be obtained by using Equation (2.1) and Equation (2.2), respectively. Column

“α∗” shows the optimal value of parameter α, and is derived by using Equation (3.3). Finally,

the last column of the table provides additional references for instances.
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Table 5.2: Summary of the computational results of EH and CPLEX for solving 11 real-world

instances.

Criterion CPLEX EH

Percent of feasible solution 81.8% 100%

Percent of best solution 63.6% 100%

Percent of optimal solution 63.6% 90.9%

Average computation time 13823.47 3093.52

Average gap 0.08 0.06

Table 5.2 summarizes the outcomes of CPLEX and EH on those 11 real-world instances of

Table 5.1 (we did not report the outcomes of the Variable Neighborhood Search+Tabu Search

(VNS+TS) by Paula (2012) because the study obtained slightly larger values for the objective

function of the Min k (α, β)-k Feature Set Problem (FSP), and hence, larger values for β,

which does not allow us to compare our results against). Five criteria of percent of feasible

solution, percent of best solution, percent of optimal solution, average computation time (in

second), and average gap (from the best known solution) were used to evaluate each solution

method. As the table illustrates, the EH algorithm outperforms CPLEX in every criterion.

Table 5.3 reports the details of these results. With respect to the results reported in Tables 5.2

and 5.3 several points are worth discussing:

• While the EH algorithm obtained feasible and best known solutions for all 11 instances,

i.e. for 100% of instances, and optimal solutions for 10 instances (90.9% of instances),

CPLEX rates are 81.8%, 63.6%, and 63.6%, respectively;

• observe that despite CPLEX obtains the optimal solution for the first set of six instances,

it has a very weak performance for the instances “PC” and “SM”, where the computation

times are around 10 and 3 hours. Moreover, it only obtains the optimal solution for one

instance in the second set (“4 all”), and cannot obtain feasible solution for two instances

(“0 all” and “2 all”) within 36,000 seconds (10 hours) of computation time due to the

huge size of the Branch-and-Bound tree; and,

• the EH algorithm obtains feasible solution for all 11 instances, and superior than CPLEX,

and that in a quarter of computation time (on average). Additionally, the EH algorithm

delivered optimal solution for all instances in the first set, as well as for the last four

instances of the second set (except “0 all”). Note that the instances of the second set are

those that the exact solvers including CPLEX have a great difficulty in solving them.

Those arguments demonstrate the efficiency of the EH algorithm, particularly, for large

instances of the Max β (α, β)-k FSP.

Table 5.3 details the computational results of CPLEX and EH algorithm on 11 real-world

instances of Table 5.1. The presented results were obtained by incorporating the minimum
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Table 5.3: Computational results of the exact+heuristic (EH) algorithm for solving 11 real-

world instances of the Max β (α, β)-k Feature Set Problem (FSP), where α = α∗, and p = 20

(20 optimal solutions for each instance of the Min k (α, β)-k Feature Set Problem (FSP) were

obtained). As before, we reported the outcomes of the solver CPLEX (here, “-” denotes the

CPLEX was stopped at the time limit of 36,000 seconds without obtaining even a feasible

solution). Column “|J̃ |” is the number of common features across all solutions in the pool,

β0 is the best value of β for the feasible solution, and β is the maximum value obtained.

Columns “Time” and “Gap” denote the computation time in second, and gap in % calculated

as β−β∗
β∗ × 100, where β∗ is best values of β.

CPLEX EH

Instance α∗ β∗ β Time Gap |J̃ | β0 β Time Gap

ADMF 86 118 118 5.84 0.00 101 114 118 13.11 0.00

DS 50 51 51 0.02 0.00 51 51 51 0.16 0.00

PD1 3970 4325 4325 2013.78 0.00 8858 4324 4325 3489.94 0.00

PD2 760 645 645 0.4 0.00 1265 645 645 14.56 0.00

PC 229 233 233 18539.13 0.00 225 233 233 3657.76 0.00

SM 22 40 40 10577.19 0.00 37 39 40 6579.08 0.00

0 all 354 471 - 36000 - 998 471 471 2466.08 0.63

1 all 683 989 987 36000 0.41 2120 982 989 2428.11 0.00

2 all 1016 1394 - 36000 - 3005 1394 1394 3801.78 0.00

3 all 1394 1965 1964 11044.41 0.33 4215 1962 1965 7642.15 0.00

4 all 387 549 549 1877.36 0.00 501 536 549 3935.98 0.00

Average 13823.47 0.08 3093.52 0.06

number of features, which we obtained by the algorithms of Chapter 4. Therefore, the values

of β in the table are the greatest values obtained given the minimum number of features.

Moreover, we set p = 20, i.e. 20 optimal solutions for each instance of the Min k (α, β)-k FSP

were obtained. The first three columns show instance name, optimal values of α, the best

values for β, which are available as of the time (the optimal values of β are recognized through

a value of zero for the gap, either CPLEX or EH). Columns “CPLEX” refer to the outcomes of

solving Model IPMBP by the solver CPLEX. The outcomes include the best objective function

value (“β”), if CPLEX is able to solve, the computation time in second, and the optimality

gap in %. The remaining columns show the outcomes of the EH algorithm. Column “β0”

shows the value of β for the solution obtained by the initial methods, “β” shows the best

obtained value of β, “Time” is the computation time in second, and “Gap” is calculated as
β−β∗
β∗ × 100. Across the table “-” denotes the solver CPLEX was stopped at the time limit

of 36,000 seconds without reporting even a feasible solution. Best solution obtained by each

method were highlighted.
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Table 5.4: Summary of the computational results of EH and CPLEX for solving 125 randomly

generated instances.

Criterion CPLEX EH

Percent of feasible solution 31.20% 100%

Percent of best obtained 31.20% 100%

Percent of optimal solution 31.20% 21.60%

Average computation time 667.72 196.82

Average gap 0.00 0.00

5.5.2 Computational results of random instances

The computational outcome of the EH algorithm on 11 real-world instances are very promising,

in particular, several of those instances are very large and may truly reflect the effectiveness

of the EH algorithm in solving large instance of Max β (α, β)-k FSP. Nevertheless, it would

be interesting to further evaluate the performance of the EH algorithm on a larger number of

instances. Following this, we applied the EH algorithm on 125 randomly generated instances

by Paula (2012). Recall that the standard instances of the Set k-Cover Problem (SkCP), which

were discussed in Chapter 4, do not include set I2, and therefore, we cannot create an instance

of the Max β (α, β)-k FSP.

As discussed earlier in Chapter 4, each of these randomly generated instances include 2000

features and two disjoint sets (I1 and I2) of 20000 sample pairs and an edge density of 20%,

and may represent case-control datasets with 2000 features and 200 samples. Also, due to

incorporating different parameters for generating instances they pose different computational

challenges: some of them can be optimally solved by an exact solver in a few seconds, however,

for the majority of them even a feasible solution cannot be obtained in a reasonable amount

of time. Moreover, those instances pose computational challenge for the Max Cover (α, β)-k

Feature Set Problem (FSP) as well. The latter will be discussed in Section 5.6.

Despite applying the EH algorithm on those 125 instances of Paula (2012), we may not

be able to directly compare the EH with the Variable Neighborhood Search+Tabu Search

(VNS+TS) algorithm proposed in Paula (2012) because the objective function values obtained

by the VNS+TS were not reported in Paula (2012). Instead, that study reported the gap

between the VNS+TS and the CPLEX, which are not helpful to our study because CPLEX

versions, programming language, and platforms, among others, are different between two stud-

ies, and hence, one may not benefit from those reported values of gap. In addition to this,

Paula (2012) used slightly larger values for the number of features, which in turn leads to quite

different solutions for the Max β (α, β)-k FSP and Max Cover (α, β)-k FSP.

Table 5.4 summarizes the computational experiments of the EH and CPLEX for solving 125

randomly generated instances, where α = αmax (α∗), and the number of features are extracted

from Table 4.14. Here, we compared the outcomes of CPLEX and EH across five criteria
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of percent of feasible solution, percent of best solution, percent of optimal solution, average

computation time (in second), and average gap (from the best known solution). Both methods

were allowed to run for 900 seconds (15 minutes). The last two criteria were calculated over

the number of instances solved to feasibility (only for CPLEX). Over those instances,

• the EH algorithm obtains feasible solutions for 100% of instances (i.e. for all 125 in-

stances), whereas CPLEX is able to obtain feasible solutions for slightly more than 31%

of instances;

• in addition to this, while the EH algorithm obtains best solutions for 100% of instances,

CPLEX rate is 31.2%; and,

• the average computation time of the EH algorithm is less than a third of that of CPLEX.

The above observations demonstrate the superiority and effectiveness of the EH algorithm

in solving randomly generated instances of the Max β (α, β)-k FSP. Note that the average

gap of CPLEX is calculated over the instances solved to feasibility, i.e. over only 39 instances.

With respect to this, having a value of zero for the average gap does not tell us much about

the CPLEX performance, neither does it impact the superiority of the EH algorithm. This

along with the outcomes of the EH algorithm on solving 11 real-world instances (Section 5.5.1)

is a testament to the effectiveness of EH algorithm in solving the Max β (α, β)-k FSP, and

obtaining high quality solutions, including for large instances, in a reasonable amount of time.

5.6 The Max Cover (α, β)(α, β)(α, β)-k Feature Set Problem

Recall from our earlier discussion in Chapter 3 that in order to solve the (α, β)-k Feature Set

Problem (FSP) as well as determining the optimal values of parameters, we implemented a

four-stage approach. The last step of this approach involves solving the Max Cover (α, β)-k

Feature Set Problem (FSP). The Max Cover (α, β)-k FSP aims to obtain a set of minimum

cost features, among alternative sets of features, that provides more explanations (coverage)

in total, either to the differences between the classes or similarity within entities in the same

class. In other words, the solution to the Max Cover (α, β)-k FSP is a minimum cost set of

features that maximizes the similarities between entities of the same class and the differences

between entities of different classes, and has more explanations (coverage) in total. Therefore,

in this section we discuss solving the Max Cover (α, β)-k FSP. One may realize that the set

of features obtained by solving the Max Cover (α, β)-k FSP provides a very robust feature set

because it has the maximum coverage among any alternative sets of features.

5.6.1 Proposed solution method

The proposed method for solving the Max Cover (α, β)-k FSP obtains a feasible solution by

utilizing Proposition 3.8. As we showed in Proposition 3.8, an optimal solution for both Min
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k (α, β)-k Feature Set Problem (FSP) and Max β (α, β)-k Feature Set Problem (FSP) must

be feasible for the Max Cover (α, β)-k FSP. For this solution we can calculate the value of its

objective function by using Equation (5.1):

z∗ =
∑
j∈J∗

vj (5.1)

where, J∗ is a set of features in the optimal solution of Max β (α, β)-k FSP, vj is the value of

feature j (a parameter), and z∗ ∈ Z+ is the optimal objective function value of the Max Cover

(α, β)-k FSP. Note that if the optimal solutions to Min k (α, β)-k FSP and Max β (α, β)-k

FSP are not available, then z∗ is not optimal anymore, and J∗ is a feasible solution for the

Max Cover (α, β)-k FSP.

The so obtained feasible solution may be further improved by the solver CPLEX. In spite of

the simplicity of the proposed method the computational results demonstrate that this method

is very effective in solving even large instances of the Max Cover (α, β)-k FSP.

In order to evaluate the quality of z∗, that is how far it is from optimality, we solve a Linear

Programming (LP) relaxation of Model IPMCP (this model is discussed in Section 3.5.3) by the

solver CPLEX. An LP relaxation of Model IPMCP may be obtained by relaxing Equation (3.17)

into 0 ≤ xj ≤ 1,∀j ∈ J . Because the Max Cover (α, β)-k FSP is a maximization problem, and

any feasible solution for the Max Cover (α, β)-k FSP is indeed feasible for its LP relaxation,

the optimal objective function value of its LP relaxation, which we denote it by z̄∗ ∈ R+, is

an upper bound for z∗, hence, z̄∗ ≥ z∗. In addition to this, the Max Cover (α, β)-k FSP is

an integer program (IP) and vj ∈ Z+,∀j ∈ J ; therefore, we may round down z̄∗ to its nearest

integer value, thus, bz̄∗c ≥ z∗. This upper bound has been denoted as “UB” in Figure 5.1 and

Table 5.6.

We also solve the Max Cover (α, β)-k FSP by the solver CPLEX (i.e. solving Model IPMCP ,

where possible). However, the CPLEX may not be able to solve large instances of the Max

Cover (α, β)-k FSP. We discuss this in details in Sections 5.6.2 and 5.6.3.

5.6.2 Computational results of real-world instances

This section reports the computational results of the proposed method for solving the Max

Cover (α, β)-k FSP, i.e. by obtaining a feasible solution through utilizing Proposition 3.8. Here

we did not improve the feasible solution by using the solver CPLEX because we are motivated

to show that even feasible solutions obtained through Proposition 3.8 are within reasonable

proximity to the CPLEX results, while they require much less computational efforts. All

computational experiments were implemented in the programming language Python 2.7 via

the solver CPLEX 12.5.0 Python API. Our set of instances and the computing facility are the

same as those we discussed in Section 5.5.1.

Table 5.5 summarizes the major outcomes of the experiment across four criteria of percent of

feasible solution, percent of best solution, percent of optimal solution, and average computation
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5.6. The Max Cover (α, β)-k Feature Set Problem

Table 5.5: Summary of the computational results of the proposed method and CPLEX for

solving 11 real-world instances of the Max Cover (α, β)-k Feature Set Problem.

Criterion CPLEX The proposed method

Percent of feasible solution 63.60% 100%

Percent of best solution 63.60% 45.50%

Percent of optimal solution 63.60% 9.09%

Average computation time 8388.55 1228.00

time (in second). Table 5.6 details the outcomes. It is very interesting to observe that CPLEX

is only able to obtain feasible solutions for 63.60% of instances, while the proposed method

generates feasible solutions for all instances. At the same time, CPLEX obtains best solutions

for 63.60% of instances, and that in more than 2 hours, while the proposed method obtains for

45.50% of instances, and that in about 20 minutes, i.e. at least six times faster. Note that here

we did not improve the feasible solutions generated by the proposed method. In Section 5.6.3,

we show that when those feasible solutions are further improved, they present very high quality

solutions, and far superior than those obtained by CPLEX.
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Table 5.6: Computational results of the proposed method for solving 11 real-world instances of Max Cover (α, β)-k Feature Set Problem (FSP), where

α = α∗, and β∗ is the maximum value of β obtained through the EH algorithm. Column “Max Cover” shows the best available objective function values

for the Max Cover (α, β)-k FSP, where the optimal values were highlighted. The outcomes of CPLEX include the best obtained objective function

value, and computation time in second (we did not report the optimality gap because either it was 0 or it was not reported by the CPLEX). Also, “-”

denotes the solver CPLEX was stopped at the time limit of 18,000 seconds without obtaining a feasible solution). Columns “Proposed method” show

feasible solutions for the Max Cover (α, β)-k FSP obtained by utilizing Proposition 3.8, and the computation time in second. Columns “UB” refer to

the upper bounds for the Max Cover (α, β)-k FSP. Finally, two gaps were reported: optimality gap, which is between the feasible and optimal solutions,

and the upper bound gap, which is between the feasible and upper bound solutions.

CPLEX Proposed method UB Gap

Instance α∗ β∗ Max Cover z Time z Time UB Time Optimality Upper bound

ADMF 86 118 581,608 581,608 10.07 581,328 9.11 581,755 1.90 0.05 0.07

DS 50 51 5,341 5,341 0.24 5,341 0.10 5,341 0.07 0.00 0.00

PD1 3970 4325 26,863,408 26,863,408 275.86 26,792,538 831.02 26,863,848 112.76 0.26 0.27

PD2 760 645 262,248 262,248 1.52 260,268 3.02 262,248 1.42 0.76 0.76

PC 229 233 5,699,721 5,699,721 686.97 5,646,036 612.00 5,707,403 451.48 0.94 1.08

SM 22 40 50,214,804 50,214,804 7498.72 50,149,938 755.00 50,548,001 777.59 0.13 0.79

0 all 354 474 64,001,349 - 18000 64,001,349 4,007.23 64,259,990 883.88 0.00 0.40

1 all 683 989 121,737,413 - 18000 121,737,413 710.75 121,862,814 1969.02 0.00 0.10

2 all 1016 1382 173,107,143 - 18000 173,107,143 3,573.06 173,751,149 3715.30 0.00 0.37

3 all 1394 1965 252,717,489 - 18000 252,717,489 2,671.33 252,816,753 6830.99 0.00 0.04

4 all 387 549 76,052,688 76,052,688 3413.62 76,028,538 335.41 76,104,982 1154.00 0.03 0.10

Average 8388.55 1228.00 1445.31 0.21 0.39
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5.6. The Max Cover (α, β)-k Feature Set Problem

Figure 5.1: Comparison of optimality gap versus upper bound gap for real-world instances of

Max Cover (α, β)-k Feature Set Problem (FSP). The optimality gap is between feasible and

optimal solutions and is calculated as z−z∗
z∗ ×100, and the upper bound gap is between feasible

and upper bound solutions and is calculated as z−UB
UB × 100.
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Figure 5.1 illustrates two gaps (optimality and upper bound) have very close values. This

implies that z, which is obtained as the result of applying Proposition 3.8, is of very high

quality. This may be observed by looking into the optimality gap ( z−z
∗

z∗ × 100, where z∗ is the

optimal value of objective function, where available), and the upper bound gap ( z−UBUB × 100).

We observed that the average of the optimality gap over all instances is 0.21%, and that of

the upper bound gap is 0.39%. Therefore, in the worst case the obtained solutions are within

0.39% of optimality.

In addition to this, the proposed method obtains feasible solutions faster than UB, and far

faster than CPLEX. This is illustrated in Figure 5.2. Taking into account the values of gap,

computation time, and more importantly, the size of instances, particularly of the second set,

we may conclude that Proposition 3.8 is efficiently capable of solving the Max Cover (α, β)-k

FSP.

Therefore, we believe spending additional resources to obtain optimal solutions for the Max

Cover (α, β)-k FSP does not justify its cost while high quality solutions and that very close to

optimality, in particular for large instances, can be obtained in a short time. We further verify

this argument in Section 5.6.3.

5.6.3 Computational results of random instances

To further validate the effectiveness of the proposed solution method for solving the Max Cover

(α, β)-k FSP (Section 5.6.1) we solved 125 randomly generated instances by Paula (2012) by

using the proposed solution method and CPLEX. Here, we improved the feasible solutions by

supplying them to CPLEX for re-optimization. Our set of instances are the same as those we
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Problems

Figure 5.2: Computation time of obtaining feasible, optimal, and upper bound solutions for

11 real-world instances of Max Cover (α, β)-k Feature Set Problem (FSP). The computation

time limit of the standard solver CPLEX is set to 18,000 seconds.
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discussed in Section 5.5.1.

Table 5.7: Summary of the computational results of EH and CPLEX for solving 125 randomly

generated instances of Max Cover (α, β)-k Feature Set Problem (FSP).

Criterion CPLEX Propose method

Percent of feasible solution 32.00% 100%

Percent of best solution 29.60% 88.80%

Percent of optimal solution 12.00% 12.00%

Average computation time 705.14 706.31

Average gap 0.00 0.06

Table 5.7 summarizes the outcomes of the computational experiments of CPLEX and EH

algorithm for solving those instances. For evaluation purpose we considered five criteria of

percent of feasible solution, percent of best solution, percent of optimal solution, average com-

putation time (in second), and average gap (from the best known solution). According to the

table the followings may be observed:

• CPLEX is only able to obtain feasible solution for 32% of instances. In contrast, the

proposed method of Section 5.6.1 obtains feasible solutions for all instances.

• While CPLEX obtains best solutions for only 29.6% of instances, that of the proposed

method is 88.8%, which is three times greater than CPLEX.

• Both methods have almost identical average computation times, and both were allowed

to run for 900 seconds (15 minutes).
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Figure 5.3: The gap between the integer upper bound and objective function value of the

Max Cover (α, β)-k FSP over 125 randomly generated instances. The values were sorted in

ascending order. The graph is in line with the earlier observation that the proposed method of

solving the Max Cover (α, β)-k FSP obtains very high quality solutions within close proximity

to the optimal solution.
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• The values of gap for the CPLEX were averaged over those 40 instances solved to fea-

sibility, whereas those for the proposed method were averaged over all 125 instances.

Therefore, this value of gap for CPLEX does not tell us much because of the small

sample size, and also, this does not negatively impact the effectiveness of the proposed

method in solving the Max Cover (α, β)-k FSP.

Earlier we observed that the proposed method of solving the Max Cover (α, β)-k FSP

obtains very high quality solutions within close proximity to the integer upper bound (Fig-

ure 5.1). To further validate that observation, Figure 5.3 depicts the objective function value

of 125 instances, which were obtained by the proposed method, and the integer upper bound,

which were obtained by the procedure discussed in Section 5.6.1. As the figure shows, these

two values are very close to each other, and given that the objective function value of the

Max Cover (α, β)-k FSP cannot be greater than the integer upper bound, therefore, even in

the worst case there is not that much space for improvement. This is in line with our earlier

observations regarding the performance of the proposed method.

5.7 Conclusion

In this chapter, we discussed two pre-processing and an exact+heuristic (EH) algorithm for

solving the Max β (α, β)-k Feature Set Problem (FSP). These methods are developed by

utilizing the properties and propositions discussed in Chapter 3. Because our attempt to solve

the Max β (α, β)-k FSP by exact solvers within reasonable amount of time failed, we developed

and implemented the EH algorithm. To the best of our knowledge, and at the time of writing
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this thesis, the proposed EH algorithm, which was tested on 136 instances of both real-world

and randomly generated, obtains the best solution for the Max β (α, β)-k FSP, including

for large instances, which posed computational challenges for the exact solvers prior to this

research. In a testament to this, the EH algorithm delivered feasible and best solutions for all

136 instances (i.e. for 100% of instances), whereas the CPLEX rates are 35.3% for delivering

feasible solutions, and 33.8% for delivering the best solutions. Moreover, CPLEX requires more

computation time than the EH algorithm, and that in the magnitude of three times.

Finally, we solved the Max Cover (α, β)-k Feature Set Problem (FSP) by solving the Max

β (α, β)-k FSP, and using its solution as a feasible solution for the Max Cover (α, β)-k FSP,

and improving this solution. According to the computational results, this method outperforms

the outcomes of the solver CPLEX, particularly, for large instances. In particular, we obtained

feasible and best solutions for 100% and 85.2% of instances, whereas the CPLEX rates are

34.5% and 32.3% (over 136 instances). Moreover, we showed that the obtained solutions are

within close proximity to the integer upper bounds implying the proposed method is capable

of obtaining very high quality solutions.
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Chapter 6

Concluding Remarks and Future

Research

In this research thesis, we investigated the (α, β)-k Feature Set Problem (FSP), explored its

mathematical properties and characteristics, and proposed efficient solution methods, which

are able to obtain high quality solutions, and evaluated those methods against the state-of-

the-art methods. This chapter aims to answer the research question and goals presented in

Section 1.4 by using the theoretical and computational outcomes of the thesis. In addition

to this, Section 6.2 reviews limitations of this research and proposes several future research

directions.

6.1 Theoretical and computational contributions and out-

comes

The research problem of the presented thesis is to develop solution methods for the (α, β)-k

Feature Set Problem (FSP), which aims to select a minimum cost/cardinality set of features

maximizing the similarities between entities of the same class and the differences between

entities of different classes. The (α, β)-k FSP has applications in computational biology and

Bioinformatics. As we discussed in Chapter 2, our work is motivated by limitations of the

previous studies, some of which are discussed in the followings.

• Lack of efficient solution methods for large instances. The exact methods are only capable

of solving small and medium instances. Furthermore, by comparing the state-of-the-art

algorithms with exact methods, it seems that the available heuristics do not have com-

petitive performance, particularly, for large instances. Hence, studying large datasets

and solving large instances pose a challenge to these methods. This is particularly im-

portant because almost all applications of the (α, β)-k FSP in computational biology and

Bioinformatics involve dealing with large datasets, and hence, there is a huge demand
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for efficient methods.

• Lack of performance guarantee. To the best of our knowledge, the only heuristic algo-

rithms for the (α, β)-k FSP are due to the study of Paula (2012). His study developed

algorithms that can obtain good quality solutions for medium sized instances. We realized

that his algorithms do not have good performance for large instances. Apart from this,

that study has several limitations. Firstly, there is no guarantee on the algorithms’ per-

formance. Secondly, the algorithms benefit from general and randomized local searches

originally developed for the traditional combinatorial optimization problems, whereas

it is well accepted in the literature that problem-driven local searches usually lead to

superior outcomes.

• Lack of modeling the feature’s cost. Previous studies did not consider the cost associ-

ated with selecting features. The cost may model distinguishing factors, for example,

importance, correlation with other features, dependency on other features, etc.

To overcome those limitations we defined the research question:

• Research question. Can we develop efficient combinatorial optimization-based algorithms

and methods for the (α, β)-k Feature Set Problem (FSP), in order to select a subset of

features, out of a larger set, and that in a reasonable amount of time?

We answered the research question by developing several algorithms for the (α, β)-k FSP,

in particular two very efficient exact+heuristic algorithms (Algorithm 4.3 and Algorithm 5.2)

that deliver high quality solutions, including feasible solutions for all 346 instances, and the

best known solutions for more than 50% of instances, and that in a reasonable of time. Many

of those instances still pose computational challenges for exact solvers and methods.

Our major goal of this research thesis has been to “design, develop and implement modeling

techniques, and efficient and advanced optimization-based algorithms and methods for the

(α, β)-k FSP”. This goal has successfully been achieved and accomplished in this research

thesis, more extensively,

• For the first time, we investigated and explored important properties and characteristics

of the (α, β)-k FSP in Sections 3.6 and 3.7, and utilized those in Chapters 4 and 5 in

order to design and develop algorithms and methods to solve the (α, β)-k FSP (connected

to Research goal 1; Section 1.4).

• Our developed algorithms and solution methods (Algorithms 4.3 and 5.2) can efficiently

solve large instances of the (α, β)-k FSP. Prior to our research exact algorithms could

not obtain optimal solution for these instances, and even these algorithms have difficulty

in delivering feasible solutions in a reasonable amount of time. However, the solution

methods of this research overcame these limitations by delivering high quality solutions,
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and very close to optimal, even for large instances of the (α, β)-k FSP. Also, the pro-

posed algorithms of this research outperform state-of-the-art algorithms of Paula (2012).

Our focus has been on developing exact+heuristic algorithms, which benefit from both

exact methods, and heuristic procedures. In addition to those, we also developed certain

heuristics and problem-driven local searches in order to facilitate and speed-up exact

algorithms. Our contributions have thoroughly been discussed in Chapters 4 and 5 along

with the outcomes and computational results (connected to Research goal 2; Section 1.4).

• We extended the basic modeling, algorithms and solution methods to the weighted variant

of the (α, β)-k FSP by considering features costs in all modeling, algorithms, and analyses

of Chapters 3 to 5. This allows analyzing the impact of each feature. This is valuable

because in practical analyses and applications some features may be preferred over others,

or some must always be selected by any set of features (connected to Research goal 1;

Section 1.4).

• Finally, we studied the usefulness of the developed algorithms and methods by applying

them on biological datasets ranging from medium to large instances, on weighted in-

stances, and on unweighted randomly generated instances, and in total on 346 instances

(we discussed these in Chapters 4 and 5). To this end, our algorithms and methods effi-

ciently tackled large instances, and delivered new best solutions. Such an achievement is

not available prior to this research, and is accomplished in this research thesis (connected

to Research goals 1 and 2; Section 1.4).

The major contributions and achievements of this research thesis have been summarized

in Table 6.1. We should emphasize that in this research thesis our focus has been on develop-

ing and implementing exact-based algorithms and methods, which can deliver global optimal

solutions or at least very good quality solutions. This has been considered in every aspect of

this research, for example, when developing bounds and propositions in Chapter 3, developing

pre-processing methods for the exact algorithms, and developing exact+heuristic algorithms

in Chapters 4 and 5.

In Chapter 3 we investigated and developed fundamental mathematical concepts and char-

acteristics for the (α, β)-k FSP and that for the first time. In order to solve the (α, β)-k FSP, we

followed a four-stage decomposition-based approach proposed in the previous studies (Berretta

et al., 2007; Paula, 2012), where we determined the optimal value of α (the minimum number

of features that must explain the differences between any pair of entities of different classes),

obtained optimal value for k (the optimal cost/cardinality of a set of features necessary to ex-

plain the dichotomy between the classes, considering that at least α features do so for each pair

of entities of different classes) through solving the Min k (α, β)-k FSP, determined the optimal

value of β (explaining the dichotomy between the classes, and at least α features do so for each

pair of entities of different classes) through solving the Max β (α, β)-k FSP, and finally solved

the Max Cover (α, β)-k FSP to obtain a set of features with the maximum explanation either
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Table 6.1: A summary of contributions and outcomes of the presented research thesis.

Area Major contributions

Mathematics Bounds for the Min k (α, β)-k FSP and Max β (α, β)-k FSP (Section 3.6).

and properties Properties and characteristics of the Min k (α, β)-k FSP, Max β (α, β)-k FSP, and

Max Cover (α, β)-k FSP (Section 3.7).

Feasibility conditions for the Max β (α, β)-k FSP and Max Cover (α, β)-k FSP (Sec-

tion 3.7).

Optimality condition for the Max β (α, β)-k FSP and Max Cover (α, β)-k FSP (Sec-

tion 3.7).

Algorithms and

methods

The greedy construction heuristic of multi Column Row Cover Construction

(mCRCC) for the Min k (α, β)-k FSP (Section 4.5).

The Removal Local Search (RLS) improvement heuristic for the Min k (α, β)-k FSP

(Section 4.6).

The exact+heuristic algorithm for the Min k (α, β)-k FSP (Section 4.7).

Pre-processing methods for the Max β (α, β)-k FSP (Section 5.3).

The exact+heuristic algorithm for the Max β (α, β)-k FSP (Section 5.4).

The solution method for the Max Cover (α, β)-k FSP (Section 5.6.1).

Computational

outcomes

Optimal solutions for the Min k (α, β)-k FSP over all instances of set 1, and new best

solutions over sets 2 and 3 (Section 4.8).

Feasible solutions for all instances of the Max β (α, β)-k FSP, including large instances

(Section 5.5).

Optimal solutions for all instances of the Max β (α, β)-k FSP, for set 1, and for several

large instances of set 3 (Section 5.5).

High quality solutions for all instances of the Max Cover (α, β)-k FSP (Section 5.6.3).

Tested instances Set 1: six real-world biological instances (unweighted) and five real-world face recog-

nition datasets (unweighted) (Sections 4.8 and 5.5).

Set 2: 210 standard instances of the Set Cover Problem (weighted) (Section 4.8).

Set 3: 125 randomly generated instances (weighted) for the (α, β)-k FSP (Sections 4.8

and 5.5).
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to the differences between the classes or similarity within entities in the same class, and that

with the desired characteristics, i.e. satisfying k, α, and β. Those mathematical properties

and propositions discussed in Chapter 3 are particularly important because they are building

blocks of the algorithms and solution methods proposed in Chapter 4 and Chapter 5. Several

of those properties derive bounds on the optimal objective function value of Min k (α, β)-k

FSP and Max β (α, β)-k FSP. Others investigate connections among the Min k (α, β)-k FSP,

Max β (α, β)-k FSP and Max Cover (α, β)-k FSP. Particularly, these properties and proposi-

tions greatly advance solving the Max β (α, β)-k FSP; this is very beneficial because the Max

β (α, β)-k FSP is a very challenging problem. We believe the most important propositions

include those establishing a connection between optimal solutions of the Min k (α, β)-k FSP

and feasible solutions of the Max β (α, β)-k FSP.

Chapter 4 is devoted to the algorithms and solution methods for both weighted and un-

weighted Min k (α, β)-k FSP. These algorithms include greedy construction (mCRCC) and

improvement (RLS) heuristics. In particular, we developed a very efficient exact+heuristic al-

gorithm, which combines both exact and heuristics, and obtains very high quality solution for

the Min k (α, β)-k FSP, including several new best solutions. The core idea of this algorithm

is variable fixation and iterative optimization. By testing the algorithm over three sets of 346

instances we showed that it outperforms state-of-the-art algorithms.

Chapter 5 designs and develops exact and heuristic solution methods for solving the Max β

(α, β)-k FSP. While the standard solvers fail to solve the Max β (α, β)-k FSP, particularly, for

large instances, we facilitated them by obtaining feasible initial solutions and providing these

solutions to the solvers. The computational experiments demonstrated the impact of those

initial solutions. We also utilized properties and propositions developed earlier in Chapter 3 in

an exact+heuristic algorithm, which builds very good quality initial solutions for the Max β

(α, β)-k FSP by using multiple optimal solutions of the Min k (α, β)-k FSP. Through this we

showed that good quality solutions for the Max β (α, β)-k FSP can be obtained in a reasonable

amount of time. Note that due to difficulty of the Max β (α, β)-k FSP exact solvers are unable

to generate feasible solutions for large instances. Therefore, obtaining good quality solutions

for 100% of instances, as our proposed EH algorithm does, indeed is a great breakthrough

towards solving the Max β (α, β)-k FSP. We tested the EH algorithm on a set of 136 instances,

majority of which are large instances, and concluded that the EH algorithm obtains the best

results for the Max β (α, β)-k FSP among available algorithms and exact solvers, and has a

very competitive performance for large instances.

Section 5.6 of Chapter 5 proposes a simple but effective solution method for the Max Cover

(α, β)-k FSP, which is able to obtain very good quality solutions in a short time. The proposed

method utilizes the propositions discussed in Section 3.7, and builds upon solutions of the the

Max β (α, β)-k FSP. We showed that this method has a very good performance, and while it

is much faster than the exact solvers, it delivers solutions, which are in close proximity to the

upper bounds. More importantly, the proposed method outperforms exact solvers.
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We conducted extensive computational experiments to evaluate the performance of the

proposed algorithms. More precisely, we considered three sets of 346 instances ranging from

small to large, both weighted and unweighted. Among those are 11 real-world unweighted

instances, 210 weighted instances of the Set Cover Problem, and 125 randomly generated

unweighted instances proposed by Paula (2012) for the (α, β)-k FSP.

6.2 Future research directions

In its own right this research has greatly advanced the mathematics, algorithms and solution

methods of the (α, β)-k Feature Set Problem (FSP), and that to a great extent, and has led to

delivering high quality solutions for large instances in a reasonable amount of time. Despite

this, there are several areas that may benefit from further investigation.

The major technique used in the exact+heuristic algorithm of Section 4.7 is variable fixa-

tion, which allows the original Min k (α, β)-k FSP to be reduced into smaller sub-problems. In

order to perform the variable fixation, the algorithm utilizes the information obtained during

solving a linear programming relaxation of the Min k (α, β)-k FSP, mainly, by rounding the

values of variables that have fractional values into certain integer values. Another scheme is

to benefit from the reduced costs of the relaxed variables. Also, those rounding techniques

proposed for the Set Cover Problem may shed light into other variable fixation techniques for

the Min k (α, β)-k FSP.

The exact+heuristic for the Max β (α, β)-k FSP, which was discussed in Section 5.4, can be

subject to further improvement. The algorithm implements certain mathematical properties

and propositions to obtain good quality solutions for the Max β (α, β)-k FSP. The major

operation of the algorithm is variable fixation, and the performance of the algorithm heavily

depends on it, in particular, because a pool of optimal solutions for the Min k (α, β)-k FSP

is utilized in order to fix certain variables. Firstly, any improvement in obtaining multiple

optimal solutions for the Min k (α, β)-k FSP will benefit the algorithm. Secondly, the algorithm

implements a deterministic strategy to fix variables. Despite its outcomes, investigation into

other schemes may lead to solutions with less computational efforts. One stream for this is

to investigate implementing a probabilistic strategy, which decides upon fixing a variable on

the basis of the number of times it appears in the pool. This may lead to obtaining feasible

solutions in the earlier stages of the algorithm because features than those common across the

pool may be selected.

Clearly, the proposed solution methods can be applied in other domains where there are

many features and comparatively few samples. Such domains include, but not limited to,

analysis of written texts (text mining), image analysis, social media, and email spam filtering.

For example, website Twitter produces more than 250 millions tweets per day, which includes

many new words and abbreviations (features). Li et al. (2017) argues that when selecting

features for tweets, one cannot wait until all features have been generated. Therefore, an
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online feature selection is indeed a preferred option. Contexts such as financial analysis, online

trading, and medical testing also include very large datasets, implying large number of features

are inevitable, and selecting features may therefore be needed (Li et al., 2017).
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Inza, Iñaki, Pedro Larrañaga, Rosa Blanco, and Antonio J. Cerrolaza (2004). “Filter Versus

Wrapper Gene Selection Approaches in DNA Microarray Domains”. In: Artif. Intell. Med.

31(2), pp. 91–103.

Jafari, Peyman and Francisco Azuaje (2006). “An assessment of recently published gene ex-

pression data analyses: reporting experimental design and statistical factors”. In: BMC

Medical Informatics and Decision Making 6(1), p. 27.

Jain, Indu, Vinod Kumar Jain, and Renu Jain (2018). “Correlation feature selection based

improved-Binary Particle Swarm Optimization for gene selection and cancer classification”.

In: Applied Soft Computing 62, pp. 203–215.

Jiang, Hongying, Youping Deng, Huann-Sheng Chen, Lin Tao, Qiuying Sha, Jun Chen, Chung-

Jui Tsai, and Shuanglin Zhang (2004). “Joint analysis of two microarray gene-expression

data sets to select lung adenocarcinoma marker genes”. In: BMC bioinformatics 5(1), p. 81.

Jirapech-Umpai, Thanyaluk and Stuart Aitken (2005). “Feature selection and classification for

microarray data analysis: Evolutionary methods for identifying predictive genes”. In: BMC

Bioinformatics 6(1), p. 148.

Kabir, Monirul, Shahjahan, and Kazuyuki Murase (2012). “A new hybrid ant colony optimiza-

tion algorithm for feature selection”. In: Expert Systems with Applications 39(3), pp. 3747–

3763.

Karp, Richard M. (1972). “Reducibility among Combinatorial Problems”. In: Complexity of

Computer Computations: Proceedings of a symposium on the Complexity of Computer Com-

putations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, York-

town Heights, New York, and sponsored by the Office of Naval Research, Mathematics Pro-

gram, IBM World Trade Corporation, and the IBM Research Mathematical Sciences De-

partment. Ed. by Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger. Springer

US: Boston, MA, pp. 85–103.

Kong, Yunchuan and Tianwei Yu (2018). “A graph-embedded deep feedforward network for

disease outcome classification and feature selection using gene expression data”. In: Bioin-

formatics 1, p. 11.

Kuncheva, Ludmila I. and Juan J. Rodriguez (2018). “On feature selection protocols for very

low-sample-size data”. In: Pattern Recognition 81, pp. 660 –673.

Lai, Chyh-Ming (2018). “Multi-objective simplified swarm optimization with weighting scheme

for gene selection”. In: Applied Soft Computing 65, pp. 58–68.

130



References

Lan, Guanghui, Gail W. DePuy, and Gary E. Whitehouse (2007). “An effective and sim-

ple heuristic for the set covering problem”. In: European Journal of Operational Research

176(3), pp. 1387 –1403.

Lancia, G. (2008). “Mathematical Programming in Computational Biology: an Annotated Bib-

liography”. In: Algorithms 1(4), pp. 100–129.

Lesnick, Timothy G, Spiridon Papapetropoulos, Deborah C Mash, Jarlath Ffrench-Mullen,

Lina Shehadeh, Mariza de Andrade, John R Henley, Walter A Rocca, J. Eric Ahlskog, and

Demetrius M Maraganore (2007). “A Genomic Pathway Approach to a Complex Disease:

Axon Guidance and Parkinson Disease”. In: PLoS Genet 3(6), e98.

Li, Yun, Tao Li, and Huan Liu (2017). “Recent advances in feature selection and its applica-

tions”. In: Knowledge and Information Systems 53(3), pp. 551–577.

Liu, H. and H. Motoda (2007). Computational Methods of Feature Selection. Chapman &

Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press.

Liu, Huan and Hiroshi Motoda (1998). Feature Selection for Knowledge Discovery and Data

Mining. Kluwer Academic Publishers: Norwell, MA, USA.

Lockstone, H.E., L.W. Harris, J.E. Swatton, M.T. Wayland, A.J. Holland, and S. Bahn (2007).

“Gene expression profiling in the adult Down syndrome brain”. In: Genomics 90(6), pp. 647–

660.

Lovász, L. (1975). “On the ratio of optimal integral and fractional covers”. In: Discrete Math-

ematics 13(4), pp. 383 –390.

Lu, Yun and Francis J. Vasko (2015). “An OR Practitioner’s Solution Approach for the Set

Covering Problem”. In: Int. J. Appl. Metaheuristic Comput. 6(4), pp. 1–13.

Luscombe, N. M., D. Greenbaum, and M. Gerstein (2001). “What is bioinformatics? A proposed

definition and overview of the field”. In: Methods of Information in Medicine 40(4), pp. 346–

358.

Ma, Shuangge and Jian Huang (2005). “Regularized ROC method for disease classification and

biomarker selection with microarray data”. In: Bioinformatics 21(24), pp. 4356–4362.

Martins, Ruben, Vasco Manquinho, and Ins Lynce (2015). “Improving linear search algorithms

with model-based approaches for MaxSAT solving”. In: Journal of Experimental & Theo-

retical Artificial Intelligence 27(5), pp. 673–701.

Meiri, R and J Zahavi (2006). “Using simulated annealing to optimize the feature selection

problem in marketing applications”. In: European Journal of Operational Reserach 171(3).

21st Euro Summer Institute (ESI), Nida Neringa, LITHUANIA, JUL 25-AUG 07, 2003,

pp. 842–858.

Minitab, Inc (2015). Minitab 17 Statistical Software [Computer software]. www.minitab.com.

State College, PA.

Mount, David W. (2004). Bioinformatics: Sequence and Genome Analysis. G - Reference,Information

and Interdisciplinary Subjects Series. Cold Spring Harbor Laboratory Press.

131



References

Naji-Azimi, Zahra, Paolo Toth, and Laura Galli (2010). “An electromagnetism metaheuristic

for the unicost set covering problem”. In: European Journal of Operational Research 205(2),

pp. 290 –300.

Neter, John (1996). Applied linear statistical models. Irwin series in statistics v. 1. Irwin.

Pati, Soumen K, Subhankar Mallick, Aruna Chakraborty, and Ankur Das (2019). “Informative

Gene Selection Using Clustering and Gene Ontology”. In: Emerging Technologies in Data

Mining and Information Security. Springer, pp. 417–427.

Paula, Mateus Rocha de (2012). “Efficient Methods of Feature Selection Based on Combina-

torial Optimization Motivated by the Analysis of Large Biological Datasets”. PhD thesis.

School of Electrical Engineering and Computer Science, The University of Newcastle, Aus-

tralia.

Paula, Mateus Rocha de, Martn Gmez Ravetti, Regina Berretta, and Pablo Moscato (2011).

“Differences in Abundances of Cell-Signalling Proteins in Blood Reveal Novel Biomarkers

for Early Detection Of Clinical Alzheimer’s Disease”. In: PLoS ONE 6(3), e17481.

Paula, Mateus Rocha de, Regina Berretta, and Pablo Moscato (2016). “A fast meta-heuristic

approach for the (α, β)-k feature set problem”. In: Journal of Heuristics 22(2), pp. 199–220.

Pessoa, Luciana S., Mauricio G. C. Resende, and Celso C. Ribeiro (2011). “Experiments with

LAGRASP heuristic for set k-covering”. In: Optimization Letters 5(3), pp. 407–419.

Pessoa, Luciana S., Mauricio G. C. Resende, and Celso C. Ribeiro (2013). “A Hybrid La-

grangean Heuristic with GRASP and Path-relinking for Set K-covering”. In: Comput. Oper.

Res. 40(12), pp. 3132–3146.

Petkovska, Ana, Alan Mishchenko, Mathias Soeken, Giovanni De Micheli, Robert Brayton,

and Paolo Ienne (2016). “Fast Generation of Lexicographic Satisfiable Assignments: En-

abling Canonicity in SAT-based Applications”. In: Proceedings of the 35th International

Conference on Computer-Aided Design. ICCAD ’16. ACM: Austin, Texas, 4:1–4:8.

Polanski, Andrzej and Marek Kimmel (2007). Bioinformatics. Springer, pp. I–XVII, 1–376.

Poloczek, Matthias and David P. Williamson (2016). “An Experimental Evaluation of Fast

Approximation Algorithms for the Maximum Satisfiability Problem”. In: Experimental Al-

gorithms: 15th International Symposium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016,

Proceedings. Ed. by Andrew V. Goldberg and Alexander S. Kulikov. Springer International

Publishing: Cham, pp. 246–261.

Poloczek, Matthias, David P. Williamson, and Anke van Zuylen (2014). “On Some Recent

Approximation Algorithms for MAX SAT”. In: LATIN 2014: Theoretical Informatics: 11th

Latin American Symposium, Montevideo, Uruguay, March 31–April 4, 2014. Proceedings.

Ed. by Alberto Pardo and Alfredo Viola. Springer Berlin Heidelberg: Berlin, Heidelberg,

pp. 598–609.

Rais, Abdur and Ana Viana (2011). “Operations Research in Healthcare: a survey”. In: Inter-

national Transactions in Operational Research 18(1), pp. 1–31.

Ramsden, Jeremy (2009). Bioinformatics: An Introduction. Springer.

132



References
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Şeref, Onur, Ya-Ju Fan, Elan Borenstein, and Wanpracha A Chaovalitwongse (2018). “Information-

theoretic feature selection with discrete k-median clustering”. In: Annals of Operations

Research 263(1-2), pp. 93–118.

Shukla, Alok Kumar, Pradeep Singh, and Manu Vardhan (2019). “DNA Gene Expression

Analysis on Diffuse Large B-Cell Lymphoma (DLBCL) Based on Filter Selection Method

with Supervised Classification Method”. In: Computational Intelligence in Data Mining.

Springer, pp. 783–792.

Tsai, Chih-Fong and Yu-Chieh Hsiao (2010). “Combining multiple feature selection methods

for stock prediction: Union, intersection, and multi-intersection approaches”. In: Decision

Support Systems 50(1), pp. 258–269.

Unler, Alper and Alper Murat (2010). “A discrete particle swarm optimization method for

feature selection in binary classification problems”. In: European Journal of Operational

Research 206(3), pp. 528–539.

133



References

Urbanowicz, Ryan J, Randal S Olson, Peter Schmitt, Melissa Meeker, and Jason H Moore

(2018). “Benchmarking relief-based feature selection methods for bioinformatics data min-

ing”. In: Journal of biomedical informatics 85, pp. 168–188.

Vasko, Francis J. (1984). “An efficient heuristic for large set covering problems”. In: Naval

Research Logistics Quarterly 31(1), pp. 163–171.

Vasko, Francis J. and George R. Wilson (1986). “Hybrid heuristics for minimum cardinality

set covering problems”. In: Naval Research Logistics Quarterly 33(2), pp. 241–249.

Vieira, Susana M, Joao M C Sousa, and Thomas A Runkler (2010). “Two cooperative ant

colonies for feature selection using fuzzy models”. In: Expert Systems with Applications

37(4), pp. 2714–2723.

Vieira, Susana M, Joao M C Sousa, and Uzay Kaymak (2012). “Fuzzy criteria for feature

selection”. In: Fuzzy Sets and Systems 189(1), pp. 1–18.

Wagner, Michael, Jaros law Meller, and Ron Elber (2004). “Large-scale linear programming

techniques for the design of protein folding potentials”. In: Mathematical Programming

101(2), pp. 301–318.

Wang, Chia-Ming and Yin-Fu Huang (2009). “Evolutionary-based feature selection approaches

with new criteria for data mining: A case study of credit approval data”. In: Expert Systems

with Applications 36(3), pp. 5900–5908.

Wang, L., A. Ngom, and R. Gras (2008). “Non-unique oligonucleotide microarray probe se-

lection method based on genetic algorithms”. In: 2008 IEEE Congress on Evolutionary

Computation (IEEE World Congress on Computational Intelligence), pp. 1004–1010.

Wang, Lipo (2012). “Feature selection in bioinformatics”. In: SPIE Defense, Security, and

Sensing. International Society for Optics and Photonics, pp. 840113–840113.

Wang, Lipo, Yaoli Wang, and Qing Chang (2016a). “Feature selection methods for big data

bioinformatics: A survey from the search perspective”. In: Methods 111. Big Data Bioin-

formatics, pp. 21 –31.

Wang, Yiyuan, Minghao Yin, Dantong Ouyang, and Liming Zhang (2016b). “A novel local

search algorithm with configuration checking and scoring mechanism for the set k-covering

problem”. In: International Transactions in Operational Research.

Wang, Yu, Igor V. Tetko, Mark A. Hall, Eibe Frank, Axel Facius, Klaus F.X. Mayer, and Hans

W. Mewes (2005). “Gene selection from microarray data for cancer classificationa machine

learning approach”. In: Computational Biology and Chemistry 29(1), pp. 37 –46.

Waterman, Michael S (1995). Introduction to Computational Biology: Sequences, Maps and

Genomes. CRC Press.

Xiong, Momiao, Xiangzhong Fang, and Jinying Zhao (2001). “Biomarker identification by

feature wrappers”. In: Genome Research 11(11), pp. 1878–1887.

Xu, Ying, Dong Xu, and Harold N Gabow (2000). “Protein domain decomposition using a

graph-theoretic approach”. In: Bioinformatics 16(12), pp. 1091–1104.

134



References

Yagiura, Mutsunori, Masahiro Kishida, and Toshihide Ibaraki (2006). “A 3-flip neighborhood

local search for the set covering problem”. In: European Journal of Operational Research

172(2), pp. 472 –499.

Yang, J and S Olafsson (2009). “Near-optimal feature selection for large databases”. In: Journal

of the Operational Research Society 60(8), pp. 1045–1055.

Yongming, Li, Zhang Sujuan, and Zeng Xiaoping (2009). “Research of multi-population agent

genetic algorithm for feature selection”. In: Expert Systems with Applications 36(9), pp. 11570–

11581.

Zhang, Xin, Ravi Mangal, Aditya V. Nori, and Mayur Naik (2016). “Query-guided Maximum

Satisfiability”. In: SIGPLAN Not. 51(1), pp. 109–122.

Zhao, Zheng, Fred Morstatter, Shashvata Sharma, Salem Alelyani, Aneeth Anand, and Huan

Liu (2010). title. Tech. rep. Arizona State University Feature Selection Repository.

135


	Introduction
	Introduction
	Optimization in Bioinformatics
	Feature selection in Bioinformatics
	Research question and research goals
	Thesis structure
	Conclusion

	Research Problem and Literature Review
	Introduction
	Problem statement
	Feature selection methods
	Research motivation
	Conclusion

	Mathematical Models and Properties
	Introduction
	Definitions and notations
	A bipartite graph representation
	Illustrative examples
	Mathematical models
	An integer program for the Min k (, )-k Feature Set Problem
	An integer program for the Max  (, )-k Feature Set Problem
	An integer program for the Max Cover (, )-k Feature Set Problem

	Bounds
	Mathematical properties
	Conclusion

	Solution Methods for the Min k (, )-.4-k Feature Set Problem
	Introduction
	The Set k-Cover Problem
	The Min k (, )-k Feature Set Problem
	Lower bounds
	A greedy construction algorithm
	A removal local search
	An exact+heuristic algorithm
	Obtaining a lower bound
	Obtaining a feasible solution
	Improving the feasible solution

	Computational results
	Computational results of real-world instances
	Computational results of standard instances of the Set Cover Problem
	Computational results of random instances

	Conclusion

	Solution Methods for the Max -.4 and Max Cover (, )-.4-k Feature Set Problems
	Introduction
	Literature review
	Pre-processing methods
	An exact+heuristic algorithm
	Initial solutions
	Improved solutions

	Computational results
	Computational results of real-world instances
	Computational results of random instances

	The Max Cover (, )-k Feature Set Problem
	Proposed solution method
	Computational results of real-world instances
	Computational results of random instances

	Conclusion

	Concluding Remarks and Future Research
	Theoretical and computational contributions and outcomes
	Future research directions


